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QUOTATIONS.

'...the preparation and study of amorphous solids owe rather less to
science and rather more to art than does the study of crystalline

materials.’

J.S.Blakemore (BLAKEMORE, 1969).

‘Crystals are rigid and inflexible, whereas amorphous materials possess
variability, changeability and possibility. We are at the door of a new
age, just looking through a tiny gap. I have seen only a small area but I
think that the room on the other side is very large. The twentieth century

is the crystal age, but the next age will be the amorphous age.’

Y.Kuwvano (BELL and JOHSTONE, 1985).



ABSTRACT.

The partial correlation functions of amorphous Dy7N13 have been
measured. Modelling the static disorder leads to interatomie distances and
coordination numbers. A modelling study of the atomic structure has been
performed. It is concluded that a distorted trigonal prismatic model shows

the greatest potential.

The magnetic structure factor of Dy7Ni3 has been studied. A
Fourier-transformation approach shows that the moments are on the Dy ions
only, that the nearest neighbour interaction is ferromagnetic in character
and suggests that magnetic anisotropy is small.

The magnetic form factor for Dy3+ in Dy7N13 has been measured. The
unpaired 4f-electrons of Dy3+ are more highly localised than predicted by a
Hartree-Fock calculation. An additional low-Q contribution to the form
factor was observed which may be due to a conduction electron polarisation.

The Dy moment is close to the free-ion value.

A SANS study shows that the Dy7N13 samples are highly homogeneous apart
from surface defects. Also the evolution of magnetic correlations has been
observed by SANS. The Lorentzian-plus-Lorentzian-squared lineshape is

appropriate above 35K but not below. The deduced spin correlation lengths

indicate D,/J,~0.023.

Inelastic neutron scattering has been used to measure the vibrational

density of states of vitreous—8203 over its full energy-range with medium
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resolution and in the region of the boroxol ring breathing mode with high
resolution. The boroxol ring breathing mode contributes only a small

feature to the density of states. Thus it is accentuated in the Raman

spectrum.

Vibrational density of states calculations have heen performed for B203
structural medels. By comparison with the neutron data and the Raman
isotopic substitution data it is shown that the triangular BO3 network
containg a high proportion of boroxol rings. A Born-force model with a

force constant ratio of 0.2 gives good consistency with experiment, but

vith evidence for a more sogphisticated force model.

NB An informative summary of this thesis may be found in the final Chapter.
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CHAPTER 1.

INTRODUCTION.

Glassy mnaterials have been known to man and wade use of for many
centuries. Prior to this century all the known glasses were oxide glasses
and their main use was in optical applications. Since then there has been a
great increase in the variety of amorphous solids, in the number of methods
of preparation of amorphous solids and in the applications for which these
materials are used. As amorphous solids become increasingly important
technologically, so it becomes more important to understand their basic
properties. However, at present these basic properties are not at all well

understood. Amorphous solids are described in general in chapter two of

this thesis.

The technique that has been used for all the experimental work described
in this thesis is neutron scattering. This is one of the most successful
and widely used of modern experimental techniques and neutron scattering
has found application in many areas of physics, chemistry, biology and
engineering. An introduction to neutron scattering is given in chapters
three and four together with a development of the theoretical results

needed for the neutron scattering experiments described in later chapters

of the thesis.

This thesis is concerned in particular with the metallic glass DYTNiB'
Amorphous metals were discovered in 1960 and have since been showm to have
useful mechanical and magnetic properties. However, our understanding of

the atomic and magnetic structure of amorphous metals is still limited and
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must be greatly advanced if their especial properties are to he fully
utilised. To this end the approach of the work reported in this thesis has
heen to make a detailed study of one particular metallic glass, Dy?NiS. The
atomic and the magnetic correlations in Dy?Ni3 have been studied, both at

short range and at long range, and these studies are reported in chapters

six to eleven.

The second amorphous solid dealt with in this thesis is vitreous B,0

273"
This oxide glass has been known for a long time and its atomic short range
order would seem to be well understood. However, the intermediate range
order in 3203 is still a matter of controversy and measurements of the
atomic vibrations have been made as a means of obtaining valuable
experimental evidence relating to this question. Also calculations of the
dynamics of 3203 have been performed for several structural models, and the

results of these are considered in conjunction with the experimental data.

The work on B203 is described in chapters twelve to fifteen.

Chapter 1 Page 1-2



CHAPTER 2

AMORPHOUS SOLIDS.

2.1 INTRODUCTION.

As yet there are no universally accepted definitions of the terms
ramorphous’ and ’'glass’ and hence it is worthwhile to define what they mean
in this thesis. The definition of the term amorphous adopted here is as
follows: An amorphous material is a phase of condensed matter which has a
non-crystalline atomic structure. Thus amorphous materials do not possess
the atomic long range order (LRO) characteristic of a crystal. That is to
say they are not periodic. This has the practical consequence that an
amorphous material can be identified by its diffraction pattern which does
not contain Bragg peaks but rather is a smoothly varying function in
reciprocal space. Note that the term amorphous applies to both solids and
liquids, but does not apply to the recently discovered quasi-crystalline
materials {(SHECHTHAN, BLECH, GRATIAS and CAHN, 1984) which are thought to

possess long range orientational order but not long range positional order.

The properties of an amorphous solid can be strongly dependent on the
method of preparation (see for example WRIGHT, SINCLAIR and LEADBETTER,
1985) and this has resulted in a narrower, more specific definition of the
term glass. The definition adopted in this thesis is as feollows: A glass is
an amorphous solid which has been prepared by quenching from the melt. The
term vitreous is taken to have a meaning identical to that of the term

glassy.
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An important property of amorphous solids is that they are generally
isotropic. That is to say their macroscopic properties are generally found
to be independent of the orientation of the sample. This is a consequence
of the disordered non-crystalline atomic structure. However, preparation
methods which involve a degree of anisotropy can result in exceptions to
this general property of macroscopic isotropy. For example thin films
formed by thermal evaporation can sometimes be produced with a columnar

structure (LEAMY, GILMER and DIRKS, 1980).

2.2 PREPARATION METHODS.

In order to produce an amorphous solid the material must be solidified
in such a manner that crystallisation is prevented from occurring. The
conventional preparation method is melt quenching. This involves cooling
the molten form of the material sufficiently quickly to preclude crystal
nucleation and growth. For an easy glass-former, such as 3203, the glassy
phase can be produced simply by using an oven to heat a crucible of the
material above its melting point and then allowing it to cool to roem
temperature. The rate of cooling for this procedure is of order ks L.
However, for glasses which are relatively far from thermodynamic
equilibrium, notably metallic glasses, it is necessary to use a special
technique where a much greater cocling rate is achieved. The original
method used for preparing metallic glasses was splat cooling in which small
drops of liquid metal are either projected at a copper sheet or smashed
between a hammer and anvil. Nowadays either melt spinning or melt

extraction is used. In the melt spinning technique ingats of the metal are

melted in a quartz tube by an r.f. heating coil and a stream of the molten
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metal is forced through a hole in the bottom of the tube by a blast of
inert gas (figure 2.1). The jet hits a rapidly rotating copper wheel and is
thus cooled at a rate of ---106Ks"1 or greater. This results in a leng, thin,
ribbon of the metallic glass of thickness up to about 30pm. In the melt
extraction technique a rapidly spinning copper disc removes liquid from a
reservoir producing fine wires. Neither of these techniques is able to
produce material in bulk form. However, recent studies (ATZMON, UNRUH,

POLITIS and JOHNSON, 1985) have shown that bulk material may be produced

from melt—-spun ribbons by a process of repeated cold rolling.

Another method for producing amorphous solids with the starting material
in the liquid state 1is the sol-gel process. This method starts with a
solution which then forms a multicomponent gel by a process of
polymerisation, finally forming a three dimensional (3D) network. The
solvent is them driven off by heat, and densification occurs with the
amorphous s0lid as the final result. Amorphous solids prepared by the

sol-gel process can be made very pure, and they are found to be very

similar to glasses.

There is a number of techniques which can be used to produce thin films
of amorphous solid, most of which involve the vapour phase as the starting
material. The problem with all of these techniques is that the fipal
product cannot be made very pure, and for most of them there is little
control over the composition. However, they do have the advantage that the
estimated effective cooling rate, ~109Ks_l, is higher than for any other

method. In the thermal evaporation technique a starting compound is

vaporised and a thin film is deposited from the vapour onto a substrate.
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The substrate is held at a low temperature so that the mobility of the
adatoms 1is low and hence crystallisation is prevented from occurring. The
technique of sputtering is similar to thermal evaporation except that atoms
are removed from the starting compound by ion bombardment. In the case of
glov-discharge decomposition an r.f. field produces a plasma in a low
pressure gas, chemical decomposition of the gas takes place and a solid
film is deposited on a substrate. The technique of chemical vapour
deposition is similar to glow-discharge decomposition except that
decomposition of +the vapour relies on thermal energy. Thin films of

amorphous solids may also be produced by electrolytic deposition.

The methods discussed above are the main ones used for producing
amorphous solids. However, there is a number of less important techniques
which will be discussed briefly: The technique of irradiation uses a
starting material which is already in the solid state. A crystalline sample
of the material is bombarded with ionising radiation (high energy neutrouns,
electrons or ions) and structural damage occurs which results in an
amorphous solid. Amorphisation can also occur as a result of mechanieal
processes. In the case of shear amorphisation the simple act of grinding
can render amorphous an originally crystalline material. Amorphisation can
alse be caused by shock-wave transformation where it is thought that the
shock-wave front from an explosion produces local melting. There are also
certain chemical reactions which can result in the formation of an

amorphous solid.
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2.3 CLASSIFICATION OF AMORPEOUS SOLIDS.

Amorphous solids can be classified according to the type of bonding that
occurs between the atoms (ELLIOTT, 1983). It should be pointed out that in
a real solid more than one type of bonding can contribute. Hovever, one

type of bonding will generally predominate and so such a classification is

still worthwhile.

2.3.1 COVALENT BONDING.

The group of glasses which has been known for by far the longest is the
oxide glasses and these are often termed ‘conventional glasses’. Pripme
examples of oxide glasses are 5102 and 3203. Glasses made from the oxide of
just one element are known as single component glasses, and these can
generally only be made at the stoichiometric composition. However,
multicomponent oxide glasses (ie. made from the oxides of more than one
element) form over a wide range of compositions. Multicomponent glasses
vhich contain non-glass-forming oxides in addition to glass-forming oxides
can also be made and these are termed modified glasses (eg Nazo—Sioz). More
recently it has been discovered that amorphous solids can be formed by
binary systems involving the chalcogen elements sulphur, selenium or
tellurium, and these materials are known as chalcogenides. It should be
noted that even though oxygen is a chalcogen, oxides and chalcogenides are
always considered as two separate classes of amorphous solid. Arsenic
sulphide and germanium selenide are typical examples of chalcogenides.
These can be made over a wide range of non-stoichiometric composition, and

also form a large numher of multicomponent glasses involving one or more
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chalcogens and one or more other elements. Monatomic amorphous solids are
formed by sulphur, selenium and phosphorus. WRIGHT and LEADBETTER (1976)
have given an extensive review of structural studies of covalently bonded

amorphous solids.

2.3.2 TONIC BONDING.

The largest class of amorphous solids in which ionic bonding
predominates 1is the halide glasses. ZnCl2 and BeF, have been known te form
amorphous solids for some time. More recently there have been a number of
~studies of fluoroberyllate glasses. These are multicomponent glasses
containing fluorine, beryllium and one or more other elements from the
first two groups of the periodic table. There have also been studies of
heavy metal fluoride glasses such as Ban-ZrFa, and of oxyhalide glasses
such as PbO-PbCl2 (VRIGHT, GRIMLEY, SINCLATR, RAD and RAQ, 1985). Halide
based glasses are currently of technological interest for both optical
fibres and high power lasers for fusion reactors. WRIGHT (1988) has
recently reviewed diffraction studies of the strueture of halide glasses.
Another class of amorphous solid in which ionic bonding predominates is the
nitrate glasses. Glass formation only occurs in systems containing two or

more nitrates, such as KNOB—Ca(Nﬁa)z.

2.3.3 METALLIC BONDING.

A discussion of metallic amorphous solids is delayed until Chapter 6

where a much more extensive review of this class of amorphous solids is

given.
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2.3.4 VAN DER WAALS BONDING.

Polymers with a regular molecular structure usually crystallise on
cooling. However, the extent of crystallisation is limited by
irregularities in the molecular structure and irregular polymers tend to
form amorphous solids on cooling. For example ordinary polystyrene, which

is nearly atactic, is amorphous. The forces which link the chains of

polymers are Van der Waals’ forces.

2.3.5 HYDROGEN BONDING.

Whilst the bonding in the oxide glasses described in section 2.3.1 is
predominantly covalent, there are amorphous solids containing oxygen which
are believed to owe their existence to the presence of hydrogen bonds.
Potassium bisulphate glass (KHSO4) is thought to be such a solid. If water
vapour is condensed on a very cold surface it forms an amorphous solid and
there is also a number of aqueous solutions which form amorphous solids

much more readily, an example being a selution of LiCl.

2.4 GLASS FORMATION.

The process of glass formation may be described qualitatively by
considering the volume-temperature behaviour for a typical glass-former as
shown 1in figure 2.2. If the ligquid is slowly cooled from the point A so
that thermal equilibrium is maintained it will crystallise at the melting

temperature Tm wvith an abrupt and appreciable reduction in volume. Further
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cooling results in volume reduction along CD. However, if the 1liquid is
sufficiently rapidly cooled the system follows the path BE and
crystallisation does not occur at Tm. A liquid which is at & temperature
below its melting point Tm (and is still a liquid) is known as a
supercooled liquid. Further cooling of the supercooled liquid results in a
relatively gradual change in slope o¢f the V-T curve at the point E. The
region over which the change of slope oceurs is termed the glass transition
temperature Tg. At temperatures below Tg the system is in an effectively
solid non-crystalline state known as a glass. Since the glass transition is
a continuous transition extending over a range of temperatures, Tg is not
well defined and JONES (1971) has defined the fietive temperature Tf as the
temperature of the intersection of the extrapolated 1liquid and glass
curves. However, even Tf is not a well defined temperature for a particular
material as it is found to vary with the rate of coocling of the supercooled

liquid; the faster the rate of cooling, the higher 'I‘f and T _are found to

be.

Whilst thermodynamic variables such as volume and entropy are found to
be continuous through the glass transition with a change of slope,
derivative variables such as the specific heat at constant pressure c¢
(figure 2.3) show a discontinuity. Thus it would appear that the glass
transition is a Second order phase transition. However, the relatively
large variation of the transition temperature suggests that the glass
transition is not a genuine thermodynamic phase transition. Figure 2.3 also
shows cp for the crystalline phase of the same material. This exhibits a
singularity at the melting point Tm due to the latent heat of melting. No

such latent heat singularity accompanies the glass transition. Note also
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that the specific heats of the glassy and c¢rystalline phases are

essentially the same.

Perhaps the clearest approach to the phenomenon of the glass transition
and the glassy state concerns relaxation processes. If a glass is
maintained at a temperature just below its glass transition temperature it
is found that eventually it relaxes to metastable equilibrium at a point on
the extrapolated supercooled liquid line (ADKINS, 1975). However, as a
glass-former is cooled relaxation times rise dramatically and this is
manifested as a sharp (but continuous) increase in viscosity. The
relaxation times for the atoms to rearrange into the (metastable)
equilibrium configuration (the supercooled liquid) become much larger than
the timescale of any experimental probe (ie. of the order of years to the
age of the universe), the atoms are frozen in position and so the glass is
effecrively solid. The glass transition may thus be regarded as occurring
at a temperature for which relaxation times become large in comparison with
the experimental timescale. The glassy state may then be regarded as an
effectively metastable state which is in effect a solid but 1is not the
equilibrium configuration. In principal a glass will relax to the
(metastable) equilibrium configuration (the supercooled liquid), but the
relaxation times involved are so very long that the glassy state is a phase
of matter worthy of consideration in its own right. This enables a clear
distinction 10 be drawn between the glassy state and the supercooled
liquid; the supercooled liquid is a (metastable) equilibrium configuration
in which the atoms do not have fixed equilibrium positions, whereas the
glass is an effectively metastable non-equilibrium configuration in which

the atoms vibrate about equilibrium positions which are fixed on normal
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timescales. Thus the glass transition occurs between two clearly different
phases of matter. The ideas presented above provide a clear explanation of
the observation that the faster a glass-former is cooled, the higher Tg is
found to be, since a faster quench rate means that relaxation processes

become frozen out at a higher temperature.

Another approach to the glass transition is to consider the entropy

involved. The specific heat cp is given by;

c, = T [a7)
- ST ) (2.4.1)
yielding;
T=T2
52 - 51 = cp d({1nT) (2.4.2)
T='I‘1

Hence integrating cp vith respect to 1InT gives the entropy directly.
Following this the specific heats shown in figure 2.3 may be integrated
from zero temperature up to a finite temperature T to obtain the excess

entropy A4S shown in figure 2.4 . The excess entropy is defined as;

85 = € Sy50uid ~ Scrystal ) (2.4.3)

where Sliquid and Scrystal are the entropies of the supercooled liquid and
of the crystal. At Tm the excess entropy of the supercooled liquid is Sm,
the entropy of melting (of the crystal). As the temperature of the
supercooled liquid is reduced below T, the excess entropy AS decreases
until Tg is reached when sg¢lidification {(to a glass) occurs and AS hecomes

essentially zero. However, if the temperature of the supercooled liquid is
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reduced more slowly then the glass transition ocecurs at a lower value of
Tg' This raises the question of what would happen if it were feasible to
cool the supercooled liquid more and more slowly without limit. If AS is
extrapolated to lower temperatures (figure 2.4) then it becomes zero at a
temperature T, and then becomes negative. This leads to what is known as
the ‘entropy crisis! (KAUZMANN, 1948) - according to the extrapolation of
the AS curve it could be possible to obtain a supercooled liquid of lower
entropy than the crystal if the cooling were sufficiently slow. Such a
situation is physically unacceptable and in practice is always avoided by
the occurrence of the glass transition. The temperature T, has thus been
interpreted as a hypothetical 1ideal glass transition temperature and it
sets a lower limit on any real Tg‘ Real values of Tg are alwvays greater
than T, because of the mediation of kinetic (relaxation) effects. However,
the existence of an ideal limiting glass transition temperature suggests

that the existence of glasses is not dependent purely on kinetic phenomena.

At present there exists no wholly successful theoretical treatment of
the glass transition. The unification of the thermodynamic and Kkinetic
aspects of the glass transition is perhaps one of the most formidable
problems of condensed matter physics. The best-known and most general
theoretical picture of the glass transition is the free volume model of
TURNBULL and CQOHEN (1961; 1970). In this model each molecule has associated
with it a free volume which may be defined as the region of space
accessible to its centre of mass without movement of the other molecules.
The free volume may either be localised such that the molecule cannot
exchange neighbours and can only execute oscillatory salid-like motion, or

it may be delocalised such that the molecule can exchange neighbours by a
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diffusive excursion. The model assumes that no free energy is required for
redistributing free volume among the moclecules so that the free volume L
of each molecule fluctuates with the continual redistribution of the tortal
free volume Vf. A liquid undergoes a glass transition when Vf is reduced to
a critical level below which there is inadequate room for molecular
manceuvrability and macroscopic fluidity. Thus the glass transition occurs

when the free volume is sufficiently excluded from the system.

For mixtures (binary, ternary ete.) it is found that the range of
composition over which a glass may be formed (the glass-forming region) is
located around a deep eutectic in the phase diagram (see figure 6.4 for an
example of a phase diagram of a binary system). This may be understood as
follows; the range of temperature over which the melt is both
thermodynamically (T(Tm) and kinetically (T)Tg) capable of crystallising is
much less at the eutectic compesition than at any other composition. This
is simply because Tm has its minimum at the eutectie composition. Hence if
a melt at the eutectic composition is cooled rapidly it is less at risk of
crystallising than at any other composition and this explains why the

glass-forming region is located around a deep eutectic.

2.5 THE ATQNMIC STRUCTURE OF AMORPHOUS SOLIDS.

2.5.1 THEORIES OF ATOMIC STRUCTURE.

Whilst amorphous solids do not exhibit LRO it is found that they de
exhibit local order. This may be seen to be a consequence of the fact that

the interatomic distances do not sink below some minimum value (ie. the
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local order arises from the forces between the atoms). The study of the
atomic structure of amorphous solids is thus concerned with the

characterisation of local order.

Probably the first theory of the atomic structure of amorphous solids
was the crystallite theory of LEBEDEV (1921) and later RANDALL, ROOKSBY and
COOPER (1930). This theory envisages an amorphous sclid as an assembly of
very small crystallites whose linear dimensions are of order 10A to 20A. In
such a model the lack of LRO arises from the random arrangement of the
crystallites with respeet to each other. However, the early diffraction
experiments of WARREN (1937; 1940) showed that discrete crystallites are
not present; it was shown that the erystallites would have to be about the
same sSize as a single unit cell in order to account for the large breadth
of the peaks of the diffraction patterns of glasses. This is at variance
with the whole idea of crystallinity which is one of regular repetition.
(A single wunit cell does not constitute a crystal.) Futhermore such small
crystallites would imply that a large proportion of the material is
composed of inter-crystallite regions and the crystallite theory does not
address the nature of these regions at all. As was first pointed out by
WARREN and BISCOE (1938), such a structure would lead to a large amount of
small angle scattering and this is not observed for conventional glassy
materials (eg. SiOZ). More recently PORAI-KOSRITS (1958) formulated the
modern crystallite theory in which well ordered regions (~crystallites) are
separated by relatively disordered regions, and various versions of the

theory still reappear occasionally (GOODMAN, 1982; HOSEMAN, 1985).
The most widely accepted theory for the atomic structure of amorphous
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solids in which directional covalent bonding predominates is the continucus
random network (CRN) theory. This was originally developed from
ZACHARTIASEN’s (1932) empirical rules for oxide glass formation. Zachariasen
argued that, since glasses and crystals have the same interatomic forces,
the tendency to minimum internal energy results in similar bonding
configurations in both phases. It was then assumed that the oxygen
polyhedra found in oxide crystals would also occur in glasses, but in
glasses these would connect together in a random way so0 as to result in a
non-periodic structure. In this way a CRN is constructed in which the atoms
are subject to the constraint that their separations are not less than a
normal bond length and thus the internal energy is kept low. The four rules
proposed by Zachariasen for the formation of an oxide glass Anom are as
follows:
1. An oxygen atom may not be linked to more than two A atoms.
2. The number of oxygen atoms around an A atom must be small (three or
four).
3. Oxygen polyhedra share corners with each other, but not faces or edges.
4. At least three corners of each oxygen polyhedron must be shared, or a
30 network will not be obtained.
There are exceptions to these rules {(For example, edge-sharing tetrahedra
are generally thought to occur in SiSe2 (GLADDEN and ELLIOTT, 1987)) and
they should not be regarded as absolute. However, they provide a useful
framework for understanding the atomic structure of oxide glasses in terms
of a CRN, and c¢an also be easily extended to encompass other covalently

bonded materials.
A glass whose atomic structure is described well by a CRN is B203, and a
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tvo-dimensional {2D) analogue of 3203 is used in figures 2.5 to 2.8 to
illustrate the ideas presented above. The oxygen polyhedron in these
figures is an A03 triangle with an & atom at the centre and oxygen atoms at
the wvertices. Figure 2.5 shows a 2D A203 crystal, and figure 2.6 shows the
atomie structure of a 2D A203 glass according to the cerystallite theory.
Figure 2.7 shows a 2D A,0, CRN. The triangular structural unit of the
crystal is retained in the CRN structure, and the lack of LRO arises from
the distribution of angles between adjacent triangles. The continuous
nature of a CRN should be emphasised: In a perfect CRN there are no
unsatisfied bonds and a sample may be regarded as a single macromolecule
with connections all the way from one side to the other. One may view a CRN
as a crystal with an infinitely large unit cell containing an infinite

number of atoms.

0f course the idea of a CRN presented above 1is an idealisation. In a
real material there will be dangling (ie. unsatisfied) bonds, vacancies,

voids and possibly some kind of line defects.

Figure 2.8 illustrates the atomic structure according to the CEN theory
of a modified glass made from glass-forming A203 and non-glass-forming XO.
Each X0 unit breaks one of the bridging bonds formed by an oxygen atom
between two of the triangular A03 structural units, resulting in a pair of
non-bridging oxygen atoms each bonded to only one A atom. The non-bridging
oxygen atoms carry a negative charge which is compensated by the positive
charge of the X cation. The overall result is that the connectivity of the
network is reduced and hence the X cation 1is known as a network modifier.

This theory of the atomic structure of a modified glass provides a simple
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physical interpretation of the observation that the addition of network
modifier material to a glass-former results in a rapid decrease of such
quantities as viscosity and melting point. If sufficient network modifier
is added to a glass-former the network connectivity is completely destroyed

and the resultant structure is known as an invert glass.

Single component oxide glasses normally occur only at the stoichiometrie
composition defined by the 8-N rule (which states that the coordination
number of an atom with N valence electrons is given by 8-N). For such
systems bonding only occurs between unlike atoms and the application of the
CRN theory is straightforward. However, single component chalcogenide
glasses oeccur over a wide range of non-stoichiometric composition and hence
there must be some bonding between like atoms. The application of the CRN
theory is thus more involved since the degree of chemical ordering must be
considered. The two extreme cases (BETTS, BIENENSTOCK and OVSHINSKY, 1970)
are the chemically ordered network (CON) and the random covalent network
(RCN). The CON has the maximum possible number of unlike atom bonds.
Meanwhile the RCN has no preferential ordering and the distribution of bond
types 1is purely statistical, determined only by the atomic coordination
numbers and the composition. Most chalcogenide glasses ara thought to have

an atomic structure well described by a CON.

It is customary to make a division of the local order in covalent
amorphous solids into two regimes. The first involves shorter range atomic
correlations and is thus related to the bhasic structural unit of the CRN.
This regime is termed short range order (SR0). The second regime involves

atomic correlations over distances greater than the size of the basie
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structural unit and 1is termed intermediate range order (IR0O). A
prototypical example of IR0 is the planar boroxol ring of three triangular
BO, units thought to occur in 3203, and this forms the basis of the study

reported in Chapters 12 to 15.

In addition to the CRN theory and the microerystallite theory discussed
above, the literature contains a number of other theories of the atomic
structure of covalently bonded amorphous solids. Noteworthy examples are as
follows: The amorphon model of GRIGOROVICI and MANATLA (1969) which is a
network model for Ge or Si composed of a mixture of diamond-like units and
regular dodecahedra; the polytetrahedral model of GASKELL (1975) which is a
model for Ge or Si based upon polytetrahedral units containing five
tetrahedra; and PHILLIPS’ (1981) raft model for GeSe2 which involves
cerystalline layers terminated by Se-Se ‘wrong’ bonds. Generally such
approaches have agreed less well with the experimental data than the CRN
theory. However, in some specific cases an alternative theory has been
found to be more appropriate. For example DANIEL, LEADBETTER, WRIGHT and
SINCLAIR (1979) have shown that vapour-deposited arsenic sulphide is well
described by a partially polymerised molecular model, arising from the

presence of AsAS4 molecules in the vapour.

For amorphous solids in which highly directional covalent bonding is not
the predominant form of bonding the CRN theory is probably not appropriate.
In the case of amorphous metals a random close packing (RCP) of hard
spheres has been widely used to medel the atomic structure. However, it is
not yet clear how the chemical ordering found in many amorphous metals

arises. The atomic structure of amerphous metals is discussed in more
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detail in Chapter 6. In the case of polymer glasses, the chain molecules of
which are linked to each other by Van der Waals’ forces, the structure is

best described by the random coil model of FLORY (1975).

2.5.2 TEE CHARACTERISATION OF ATOMIC STRUCTURE.

One of the simplest structural properties of an amorphous solid is the
density. A successful model of the atomic structure must reproduce the
density of the real material and this provides a very important constraint

on model structures.

To characterise the SRO of an amorphous solid as completely as possible
one must consider how the atoms are distributed about each other. Since
amprphous solids are isotropic a measurement of the atomie structure can
only yield information on how the atoms are distibuted as a function of
distance and not on any directional dependence. Thus a useful function for
characterising SRO is the radial distibution funetion (RDF) n{r) where
n(r)dr is the number of atoms at distances in the range (r,r+dr) from an
origin atom, averaged over all possible origin atoms. Alternatively one may
consider the pair distribution function (or radial density function) g(r)
which gives the directionally averaged atomic number density at a distance

r from an origin atom, averaged over all possible origin atoms. Clearly

these two functions are related;
n(r)dr = 4nrldr g(r) (2.5.1)

The symbol g(r) is used here to be consistent with the Van Hove G(x,t)

correlation function formalism introduced in section 3.3.4 ., The function
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which is most appropriate for diffraction measurements of SRO and is used
in the work described in this thesis (see Chapters 7 and 8) is the total

correlation function t(r) defined by;
t(r) = 4nrg(r) (2.5.2)

In the case of a polyatomic material the correlation function may be
separated into partial correlations functions giving the distribution of
one particular type of atom about another particular type of atom. Thus the
partial density function gAB(r) gives the average density of B atoms at a
distance r from an A atom. For example in the case of Dy7Ni3 there are
three wunique partial correlation functions describing correlations between
the following three pairs of atoms: Dy-Dy, Dy-Ni and Ni-Ni. Such a
separation into partial correlation functions is generally ascribed to

FABER and ZIMAN (1964).

It follows that the best criterion for assessing a model of the atomie
structure of an amorphous selid is a comparison of the partial correlation
functions of the model with those of the real material., The nearest
neighbour coordination numbers may be derived from the partial correlation
functions and these can be particularly useful in understanding the atomic
structure. Other quantities than the partial correlation functions can
provide additional information for assessing a particular structural model.
In particular studies of the atomic vibrations as discussed in Chapter 5
and Chapters 13 to 15 can be most useful. Also magnetic resonance signals

and extended X-ray absorption fine structure (EXAFS) have been found to be

useful.
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2.5.3 METHODS QF MODELLING ATOMIC STRUCTURE.

The aim in the modelling of the atomic structure of an amorphous solid
is to identify the local arrangement giving rise to the observed 5SRO (ie.
the basic structural unit in the case of a CRN) and also to determine how
the IR0 arises. A commonly used method for testing various structural ideas
has been to censtruct a cluster model containing of order 1000-2000 atoms
and to compare this with experiment. The first such model was that
constructed by BELL and DEAN (1570) for Sioz. These models are constructed
according to structural ideas under consideration either by hand using
'ball and stick’ type pieces, or by using a computer to generate the atomic
coordinates. Usually the model is then relaxed by means of an appropriate
interatomic potential so as to minimise the strain energy. In the case of
covalently bonded materials the appropriate potential is the KEATING (1966)
potential which contains both bond-stretch terms and so-called bond-bend
terms (see Chapter 5). The correlation function tm(r) calculated directly
from a model must be corrected for the finite size of the model. HASON

(1968) has given the finite size correction factor for a gspherical model of

diamter L as;

() = [‘%L]z [r;i’“] £(r) (2.5.3)

vhere t{r) is the correlation function for an infinite system of which the
model is a representative sample. Of course the correlation function t™(r)
of a spherical model of diameter L is zero for r>L. Modelling techniques
have been found to be most useful in characterising the SRO and IR0 in

amorphous solids and a review of their use for CRN structures is given by

ELLIOTT (1983).
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It 1is frequently found that the basic structural unit in an amorphous
solid is the same as the basic structeral unit in the corresponding
crystalline material., Hence LEADBETTER and WRIGHT (1972) have given a
method, known as the quasi-crystalline model (not to be confused with the
quasi-crystalline materials mentioned in section 2.1), for comparing the
SRO0 in a suitable crystal with the experimentally measured partial
correlation functions. This model considers a single crystal sphere with
diameter of order 15A embedded in a homogeneous matrix of the same average
density and averaged over all orientations. Thus qualitative comparisons
can be made between the SRO and sometimes the IRO of an amorphous solid and
a suitable crystal. Bowever, the model does not provide a method for fully

characterising the atomic structure.

A rather different approach to structural meodelling is the application
of Monte Carlo and molecular dynamics (MD) computer simulation techniques.
The Monte Carlo technique starts with a cluster of perhaps 1000 atoms,
chooses a small randem atomic displacement and accepts or rejects the
displacement according to some c¢riterion, RENNINGER, RECHTIN and AVERBACH
(1974) have performed such & study on the AsxSel_x system vhere the
criterion which was used was a comparison of the RDF with experiment. An
alternative criterion is the minimisation of the strain energy according to
an appropriate interatomic petential. The MD technique operates by solving
the equations of motion for a cluster of up to about 1000 atoms. A simple
interatomic potential is assumed and the atomic trajectories are followed
over several thousand time steps, each one typically of order 10_153. The

atomic speeds are progressively reduced and thus the computer liquid is
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cooled through the glass transition. The advantage of MD over Monte Carlo
methods is that dynamic properties can be studied and hence vibrational
preperties can be predicted in addition to structural properties. Also the
glass transition itself can be studied. However, the problem with the

technique is that it requires a large amount of computer time with the

12, -1

result that simulated quench rates, of order 107“Ks ~, are far too high.

Also the interatomic potential must be very simple so as to yield
reasonable computation times and all the studies so far have used
non~directional (ie. ionic or Van der Waals’) potentials. Despite this,
studies of oxide glasses have been more successful than might have been
expected. For example both SOULES (1980) and AMINI, MITRA and BOCKNEY
(1981 found planar triangular 303 in studies of 3203 using an ionic

interatomic potential (see Chapter 12 for further discussion of this).
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CHAPTER 3

THE BASIC THEORY OF THERMAL NEUTRON SCATTERING.

3.1 INTRODUCTION.

3.1.1 THE NEUTRON AND NEUTRON SQURCES.

The neutron is a sub-atomic particle which was discovered in 1932 by

CHADVICK. The basic properties of the neutron are summarised in table 3.1;

Mass (GOLDMAN, 1972) 1.0086658 amu

Charge 0

Table 3.1
Spin 172

Magnetic Dipole Moment un=—1.913uN

There are two methods which are used for producing thermal neutrons for
neutron scattering experiments. These are the nuclear reactor and the
pulsed accelerator source. A nuclear reactor produces highly energetic
neutrons by the fission of wuranium 235 nuclei. The neutrons then undergo
collisions within an array of light atoms (for example D20) known as a
moderator, and the experimental neutron beams are obtained from beam holes
which view the moderator. The neutron flux thus obtained is in thermal
equilibrium with the moderator, and shows a peak at an energy which depends

on the moderator temperature.

A pulsed neutron source operates by accelerating pulsed bursts of

charged particles (either protons or electrons) to a high energy. (Of
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course heutrons cannot be accelerated since they have no charge.) The
accelerated particles are then fired into a target and neutrons are
produced by a reaction between the particles and the target nuclei
(spallation in the case of protons, and bremsstrahlung followed by (v,n) in
the case of electrons). The neutrons produced by these reactions are highly
energetic and, as with a reactor, they are thermalised within a moderator.

The experimental neutron beams are obtained from beam holes which view the

moderator.

See KOSTORZ and LOVESEY (1979) for a description of the reactor source

of neutrons at the Institut Laue Langevin and see CARPENTER, LANDER and

VINDSOR (1984) for a description of pulsed neutron sources.

3.1.2 THE USE OF NEUTRONS IN CONDENSED MATTER PHYSICS.

There are two interactions which can give rise to the scattering of
neutrons by a sample. The first of these is the nuclear force between a
neutron and the nueclei of the sample. These nuclear forces are very short
range (~10—15m), operating over much shorter distances than interatomic
distances (~10_10m). The seccnd interaction is that between the magnetic
moment of the neutron and the unpaired electrons of magnetic atoms. Both of
these interactions are relatively weak with the result that neutren
scattering experiments are intensity limited and require long counting
times. The weakness of these interactions hags the advantage that the
penetration depth of neutrons in matter is very long and so a neutron

scattering experiment samples the bulk properties of the scattering system.

This is to be contrasted with the case of X-rays where the scattering is
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due to the electromagnetic interaction between a photon and the electrons
in the scattering system. The electromagnetic interaction is a relatively
strong interaction and generally X-rays only penetrate the surface of the
scattering system. Thus an X-ray experiment does not sample the bulk

properties of the scattering system.

The neutron scattering power of atoms varies haphazardly across the
periodic table, unlike the X-ray scattering power which increases steadily
with atomiec number Z. Thus neutrons are particularly well suited to
observing light atoms, especially hydrogen, which are virtually ’‘invisible’
to X-rays. Also neutrons are well suited to systems with elements of
similar Z since the contrast in neutron scattering power is generally much
greater than the contrast in X-ray scattering power. Furthermore the
neutron scattering power of an element can be altered by isotopic
substitution so that it is possible to change the contrast between two

elements for a neutron scattering experiment.

In the field of thermal neutrons the velocity 22001115_1 is often taken as
a standard. This corresponds to an energy of 25.3meV, a temperature of 293K
(equating kT to energy) and a de Broglie wavelength of 1.798A. Thus the
mass of the neutron is such that thermal neutron wavelengths are eof the
order of interatomic distances in condensed matter and interference occurs
in a thermal neutron scattering experiment which yields information on the
atomic structure. The mass of the neutron also leads to a thermal neutron
energy which is of the order of the energy of many excitations in condensed
matter (eg the phonon spectrum of vitreous B203 extends from OmeV to

200meV). It follows that inelastic scattering of neutrons (scattering
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processes which involve the creation or annihilation of an excitation in
the scattering system) results in a large fractional change in the neutron
energy and accurate information on the energies of excitations can be
obtained. The interaction between the magnetic moment of the neutron and
the unpaired electrons of atoms enables magnetic systems to be studied with
neutrons. The distribution of magnetic moments can be studied by elastice
(vhere elastic means that energy is not transferred between neutron and
sample} magnetic secattering, and magnetic excitations can be studied by
inelastic {vhere inelastic means that energy is transferred between neutron
and sample) magnetic scattering. Also the ability to determine the state of

polarisation of a neutron beam can be of use in studying magnetic systems.

The first experimental demonstrations of the diffraction of neutrons by
crystalline materials were performed by MITCHELL AND POWERS (1936) using a
radium-beryllium neutron source and by BALBAN AND PREISWERK (1936). The
first neutron diffractometer was built at Argonne National Laboratory by
ZINN (1947). Nowadays, with the advent of sources dedicated to producing
beams for neutron scattering experiments, the applications of neutron
scattering to the study of condensed matter physics are many and varied.
They may conveniently be divided into two classes: diffraction where energy

analysis is not performed, and inelastic scattering where energy analysis

is performed.

In a powder diffraction experiment the scattering is measured as a
function of momentum transfer between the neutrons and the sample, and by a
process of profile refinement a detailed knowledge of the crystal struecture

can be obtained. A similar technique is also used to study the atomic
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structure of amorphous materials, and this forms a major part of the work
reported in this thesis (Chapters 7 and 9). Single crystals may also be
studied using a diffractometer with a large area detector so that the Bragg
spots may be observed., A further type of diffraction that is used is small
angle neutron scattering (SANS). This technique involves the observation of
scattering at very small momentum transfers and yields information on large
structures in a sample (tens or hundreds of Angstroms). An example of the
use of SANS is reported in Chapter 10. Another type of diffractometer is
used to measure the reflection of neutrons and this is very useful in the

study of thin films and layers.

The dispersion relations of excitations in condensed matter can be
measured using a neutron spectrometer (the reactor version of which is
known as a triple axis spectrometer) which measures the scattering as a
function of vector momentum transfer and energy transfer. Also the density
of excitation states may be studied using an inelastic scattering
time-of-flight spectrometer {see Section 13.1). Diffusion-type processes
can be studied by use of a quasi-elastic scattering spectrometer vwhich
enables the exchange of small amounts of energy between neutron and sample
to be measured with high resolution. The momentum distributions of atoms,
and hence the potential wells which they experience, may be probed by use
of an inelastic scattering spectrometer which enables large energy

transfers between neutron and sample to be cobserved.
For much more detailed information about the applications of neutron
scattering and neutron scattering instruments the reader is referred to the

following reviews: KOSTORZ and LOVESEY (1979), WINDSOR (1981), ILL (1983),

Chapter 3 Page 3-S5



CARPENTER, LANDER and WINDSOR (1984), AXE and NICKLOW (1985) and

ISIS (1988).

3.1.3 THERMAL NEUTRON SCATTERING CROSS-SECTIONS.

In a typical thermal neutron scattering experiment a monochromatic beam
of neutrons of energy E and flux & is incident on a sample of N atoms known
as the scattering system. Neutrons are scattered out of the beam by the
scattering system and the total scattering cross-section is defined as;

1= {Total number of neutrons scattered per unit time)

)
tota N &

(3.1.1)
One may consider the variation with direction of the neutron scattering and
the relevant experimental quantity is then the differential cross-section,

defined as;

umber of neutrons scattered per unit time into]
de = lthe small solid angle dRQ in the direction (©,¢)
d N & 49

w

(3.1.2)

where polar coordinates with the polar axis along the incident beam are
used. If E/ is the scattered energy of a neutron then € = E-E’ is the
energy transferred to the sample and one may further consider the variation
wvith energy of the neutron scattering. The relevant experimental quantity
is the partial differential cross-section, defined as;

umber of neutrons scattered per unit time
Fnto the =olid angle dQ in the direction (9,¢)

with fipal energy in the range E-€ to E-(e+d¢)
dde N ¢ de de

(3.1.3)
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3.2 THE MASTER FORMULA.

If the interaction potential V between a neutron and the scattering
system is treated as a small perturbation then, by use of Fermi’s Golden
Rule (the Born Approximation), one eventually obtains ’the master formula’
(MARSHALL AND LOVESEY, 1971) from which all of neutron scattering theory
may be derived. This gives the cross-section representing the sum of all
processes in which the neutron changes from a state with momentum kk to a

state with momentum hk’ as;

2 2
d"a =1 k' {m PN o ,
[dee]_lg-)k' Nk [Znh"'J E PP, 2 |<_ Mo Vll'_t Ao >| S(E)\—EN+E—E )

Ao X o’

(3.2.1)

where |\) and |X\) denote initial and final states of the scattering system
with energies EA and EA’ respectively. ¢ and o' are the initial and final
neutron spin. Py denotes the probability that the scattering system is in
the state |)), and p, denotes the probability distribution of the
polarisation of the incident neutrons. m is the neutron mass. Excellent
expositions of the quantum mechanics leading to this expression have been

given by SQUIRES (1978) and PRICE AND SKOLD (1986).

3.3 NUCLEAR SCATTERING.

3.3.1 SCATTERING LENGTH AND FERMI PSEUDO-POTENTIAL.

In the case of nuclear scattering the range of the nuclear force

interaction between a nucleus and a neutron is very small in comparison
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with thermal neutron wavelengths. Hence nuclei can be treated as point-like
scattering centres vwhich give rise to an isotropic scattered neutron wave
(ie only s-wave scattering is considered). The wavefunction of a neutron

scattered by a single nucleus at the origin is thus expressed as;

__b e
¢sc = - < exp(ik’r)

(3.3.1)
where b is a constant depending on the potential which describes the
interaction between the neutron and the nucleus. Thus the value of b
depends on the particular nuclide and the spin state of the neutron-nucleus
system. b is in units of length and is generally known as the scattering
length. The scattering length is positive for most isotopes, but there are
a few isotopes with negative values. A positive scattering length
corresponds to a bphase change of n between the scattered wave and the
incident wave. Usually the thermal neutron scattering length may be taken
as real and energy independent, but at energies near an absorption

resonance it becomes complex and energy dependent.

In order to describe the interaction between a neutron and an assembly
of nuclei the interaction potential is expressed as:

2nh2

)

N
V() = 1 by S(r-R)
j=1 (3.3.2)
an expression known as the Fermi pseudo-potential. The summation is taken
over the the N nuclei vhose position vectors and scattering lengths are Ej
and bj respectively. The Fermi pseudo-potential is not the true potential

which really operates between a neutron and the nuclei of a scattering

system. In fact it is not even correct to use perturbatlon metheds for the
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scattering of a neutron by nuclei because the true interaction potential is
too strong. The justification for the use of the Fermi pseudo-potential and
the Born approximation 1is that together they give isotlropic s-wave
scattering for a single nucleus (equation (3.3.1)) - a result which is

known to be correct.

The scattering length defined in equation (3.3.1) relates to a fixed
nucleus and is sometimes known as the bound atom scattering length., If the
nucleus (mass M) is free then the scattering must be treated in the
centre-of-mass frame of reference which involves replacing the neutron mass
m by the reduced mass u (=mM/(m+M)) of the nucleus-neutron system. However,
since the potential is the same whether the nuecleus is fixed or free,
equation (3.3.2) shows that the bound atom scattering length b should be

replaced by the free atom scattering length (u/m)b.

The use of the Fermi pseudo-potential in the master formula (3.2.1)

eventually results in the following expression;

'ﬁ.}.bjbj ,I(exp(—ig-gj(0))exp(ig.l_{j ’(t))>xp(_1wt)dt
iy e

dzc

dde

=l

-1
N

(3.3.3)

The summations j and j* are taken over the nuclei of the scattering system.
The angular brackets denote a thermal average at the temperature T of the

scattering system, and t is of course time. The energy transfer (ie energy

transferred to the scattering system) is defined as;

hw

g =E - B (3.3.4)

Similarly the momentum transfer, or scattering vector as it is also known,
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is defined as;

= hk - kk’ {3.3.5)
Thus the energy transfer ¢ and scattering vector Q are the two variables
which specify the interaction of a neutron with the scattering system. If
e=0 the interaction is termed elastic, and if €#0 the interaction is termed

inelastic. It should be noted that gj(O) and Bj,(t) in (3.3.3) are

Heisenberg operators.

3.3.2 DISTINCT AND SELF SCATTERING.

For convenience one may define;

<§,j,> ) % E’E%E J<%xp(-ig.§j(0))exp(ig.§j,(t))>exp(—iwt)dt

{3.3.8)
Equation (3.3.3) may thus be rewritten as;
2
d
de_Ebb <J!J>
(3.3.7)

Let Nl be the number of atoms of element 1 in the scattering system.

Equation (3.3.7) can then be divided into two parts;

24 1 N _ N N
dode © E E 2 bjbjr J’J'> + 2 2 } bjbj: <-;j'>
11 j=1 j’=1 13j=1 j'=1
1#1° (3.3.8)

vhere the summations 1 and 1’ are taken over elements and the summations j
and j’ are now over the nuclei of one element only. This expression may be
simplified with respect to the scattering length values. The approach is to
average the cross-section over all possible distributions of scattering

length, assuming that there is no correlation between the scattering length
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values of nuclei of the same element. This assumption is true in all but a
very few special cases. The averaging process may be thought of as
calculating the cross-section for a very large number of scattering
systems, identical in nuclear positions and motions, one with each possible
distribution of bj values, and taking an average. Since the number of
nuclei in any real scattering system is extremely large (~1024) it is
statistically extremely likely that the true cross-section is very close to

this averaged value. Equation (3.3.8) thus becomes;

e Ny By, NN
dode E E E beJf <J’J > * 2 } E beJ' < | >
114 =1 3’=1 131 j’=1
141/ (3.3.9)

For the first of these two terms the indices j and j’ never refer to the
same nucleus. Hence _EEEET may be replaced by byb;, , where B, denotes the
average value of b for all the nuclei of element 1 in the scattering
system. For the second term of (3.3.9) one may make the same substitution
for terms with j#j’. For terms with j=j’, however,_BgEET must be replaced

———

with b12, the average square scattering length for all rthe nuclei of

element 1 in the scattering system. Thus equation (3.3.9) becones;

N N,

1 N szt
S LUD <j,j'>+§ 1} ) <:i,j'>+ }bl §<J,J>
11/ §=1 j’=1 1 §=1 §r=1
1ol 3%
N Ny —
SELUD B ICED IS P T T
11' J:]. j":l 1 j=1
3% (3.3.10)

vhere j#j’ indicates that the indices j and j’ are not allowed to refer to

the same nucleus.
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It follows that the cross-section naturally divides into two parts;

i?s o ]D , [dzd ]S
dode = (asde déde (3.3.11)
where;
N N @
D 1 N1e
d o 1 k' 1 ¢bb,, ] _ '
Gef) ~Feam 2 3 ) ](%xp(—lg-gj<0)>exp(1g.§j,(t))>exp(_1mt)dt
:I.].Ill j:l j’sl -
J# (3.3.12)
[dzu- ]S_ l E'L Eb_.i I;]' T exp{-iQ.R (0))ex (iQ.R (t)) dexp(-iwt)dt
dede) "Nk Zmh £71 , P332 p(1Q-R, p
1 j: -

(3.3.13)

The c¢ross-section defined in equation (3.3.12) is known as the distinet
cross-section and that defined in equation (3.3.13) is known as the self
cross-section. This separation of the cross-section into off-diagonal and
diagonal terms is due to PLACZEK (1952). The distinet scattering
cross-section relates to correlations between the positions of one nucleus
at time zero and a second different nucleus at time t. The self scattering
cross-section relates to correlations betwveen the positions of the same
nucleus at different times. Correlations betveen nuclear positions are

discussed in more detail in section 3.3.4.

At this stage it 1is useful to define the distinct and self partial

scattering functions;

v 11 g B S
Sll,(g,m) = _I T } } J(éxp(-ig.gj(0))exp(ig.§j,(t)))exp(—imt)dt
j=1 j’=1 -=
A (3.3.14)
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N
5
NOPRE N Kexpc 10.R;(0))exp(10-R (1)) Jexp(-1at)dt
1 1=l -=
(3.3.15)
Substituting in (3.3.12) and (3.3.13) gives;
2 .\D
d"a ke 1 E 5
[dgdz] "E Rl 11.(0-“1)
11- (3.3.16)
2 .8 —s S
d a ke 1 2
Gete) =k 51 b S@w
1 (3.3.17)
where ¢, , the composition variable for element 1, is defined by;
¢ = Nl / N (3.3.18)

The scattering function is incorrectly referred to by some authors as the
scattering law. An alternative equivalent formalism for the distinct and

self scattering which is favoured particularly by chemists working in the

field (WRIGHT, 1974) is;

D
d o k' 1 5.5
Ik (3.3.19)
2 .S — 5
d a ke 1
N [dgde] =N ¢ §2 bj SO
] (3.3.20)

vhere all j summations are taken over the individual atoms in a composition
unit, and k summations are taken over atom types. Nu is the number of
composition units in the scattering system. In fact the exact definitions
of many of the functions discussed in this Chapter vary greatly, and a
difference in coefficients between an equation in this thesis and an

equation in another author’s work is probably just a symptom of this.
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3.3.3 COHERENT AND INCOHERENT SCATTERING.

An alternative formalism for subdividing the ecross-section is that of
coherent and incoherent scattering. This formalism is of more widespread
use than that of distinct and self scattering, but is not as appropriate to

the study of amorphous materials. Equation (3.3.10) may be recast by adding

2 N
and subtracting a term 551 ) <j j’> :
1
1 jal

2 N N e N
1 1 2 2 1
d b.b,, < s, b, - b .
dQ;e = 311 ) 3 <J,J > + ) [ 1 1 ] ) <J,J>
].].,I j=1 j':l 1 j=1
(3.3.21)
The cross-section can then be divided into two parts;
d?.d . J:dzd }coh . [dza ]inc
dde ~ \dede dode (3.3.22)
wvhere;
N N @
2 coh 1 1’
d 1k’ 1 ¢b,b,, . .
Liﬂge] =5k EEEE 11 E E J<%xp(—1g.§j(0))exp(lg.gj,(t))>exp(—imt)dt
11/ j=1 j’=1 -=
(3.3.23)
2 .inc —7 2N 7
d o ik 1 -b . . .
) - h s 00 T R)T [ermc-inR;0nexpiaR (00 Yerpc-tanrae
1 j=1 -=

(3.3.24)

The cross-section defined in equation (3.3.23) is known as the coherent
scattering cross-section, and that defined in equation (3.3.24) is known as
the incoherent scattering cross-section. Coherent and incoherent partial

scattering functions are defined as follows;

Chapter 3 Page 3-14



coh 1 1 N Nl' ®
@ =) ) Kexp(—ig.gjw))exp(ig-Bj,<t>>>exp<—iwt>dt
j=1 j'=1 -=
(3.3.25)
517¢(Q,0) = 53(8,w)
(3.3.26)

Note that the equivalence of the incoherent and self partial scattering

functions in no way implies an equivalence of the incoherant and self

cross-sections. Substituting Sll,(Q,m) and Sinc(ﬂ @) in ¢3.3.23) and

(3.3.24) gives;

2 .coh coh
__d a _Er l . f(o’m)
fae) -% 519 P18y *11
11!
(3.3.27)
2 .inc 2 2
d” o k! 1 v ¢ - b 1nc
Gt =% 521 (2 ") s"@w
1
(3.3.28)
Examination of (3.3.14) and (3.3.25) shows that;
i;?(o w) = 511,(0 W + 84, s 1(0, @) (3.3.29)

The average scattering length El for element 1 is termed the coherent
scattering length. Similarly one may define an incoherent scattering length

for the element 1;

inc,2 T2 yi
(b1 )Y© = bl - 51 (3.3.30)

By a simple rearrangement;

(blnc)Z b . 5 2 _25 2
[\

1. 2 2 1
1 ¢ b" 5" -2 1 b
-5 ) il 15 1 3
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1 2 2
=%§[bj +51 —2511')3]
j=1
N
1 2
1 b. - b
-5 Y (P17 Py
j=1
2
- (b-5) (3.3.31)

Thus the incoherent scattering length is the root mean square deviation of
the scattering length from the mean value, and the coherent and incoherent
scattering cross-sections may be interpreted as follows: The coherent
scattering is the scattering that would be obtained from a scattering
system for which all nuclei of element 1 had a scattering length of El. The
incoherent scattering meanwhile arises from the random distribution of
deviations of the scattering length from the mean value for each element.
The coherent scattering involves correlations between the positions of
nuclei at different times and hence gives interference effects. The
incoherent scattering only involves correlations between the positions of

the same nucleus at different times and does not give interference effects.

There are two factors which give rise to incoherent scattering. These
are spin incoherence and isotopic incoherence. Spin incoherence is due to
the fact that a neutron and a nucleus of spin I can form two different
compound nuclei of spin It%; the amplitude of the neutron wave scattered by
the nucleus, and thus the scattering length is generally different for the
two different compound nuclei. There are (2I+1+1) states associated with

spin I+% and it follows statistically that for a single isotope i;

By = (21+1)"1 [ (T+1)b] + Ib] ] (3.3.32)
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b2 - LDt [ @D - 1) ] (3.3.33)

where the superscripts + and - indicate respectively the scattering lengths
for the I+% and the I-% compound nuclei which are formed between the
isotope i nucleus and the neutron. This assumes that the neutrons are not
polarised and that the nuclear spins are oriented at random. Note also that
in the case of zero nuclear spin (I=0) there is no spin incoherence.
Isotopic incoherence arises as a result of the presence of more than one

isotope of a particular element. For an element 1;
by = f £, b (3.3.34)
by" = ? fi bi {3.3.35)

vhere fi is the abundance of the isotope i. Obviously equations (3.3.30) to
(3.3.35) may be combined to evaluate the coherent and incoherent scattering

lengths for an element 1.

3.3.4 VAN HOVE CORRELATION FUNCTIONS.

The formalism for describing scattering in terms of a generalised pair
distribution function in space and time was first developed by VAN HOVE
(1954a). The generalised pair distribution function, or Van Hove

correlation function as it is often known, is defined as;

N N
G(E, t) = % E § j< 6(5'_[_{:_'(0)) 6(£'+£—Bj,(t)) >d£l
j=1 j’=1
(3.3.36)

where the summations are over all atoms in the scattering system. The pair
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correlation function may then be divided into distinct and self partial

correlation functions:

G(r,t) = e 6 (r,t) + ey 6(r,0) (3.3.37)
1 1o 1
where;
D 1 Nl Nl' .
Qo= 11| { 8xr-Ry(0) S(x'+z-R;, (1)) ) dr
§=1 §7=1
ik (3.3.38)
N
s 1<
j=1 (3.3.39)

(Note that all integrals without limits are assumed to be over the whole
range of the variable concerned.) Replacing the second delta function of

(3.3.38) with its integral representation gives;

N, N
1 Ny
G, (L, ) = %I D) j<6(5'-§j(0>)[(%ﬁjy jéxp(—ig.(£'+5-gj,<t))>dg]>u5'
i=1 j'=
j#a’
T B €
= EI CIAE Y ) I exp(-ig.r) exp(—ig.gj(O) exp(ig.gj,(t))>dg
j=1 jr=1
33 (3.3.40)

Similarly for the self correlation funetion;

N

1
G3(x, 1) %I (%u)a y I exp(-iQ.1) (exp(-1Q.R,(0) exp(ig.gj(t))> da

521 (3.3.41)

From {3.3.40) one obtains;

w
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I GElr(Ert) EKP(iQ'.E) dE =

1 1 Nl Nl, s ] $ i
RvH E E II exp(i(Q’-Q).r) dr < exp(-lQ.Bj(O) exp(lg.gj,(t)) > dQ
j=1 jr=l
Ny Ny,
1 1 23so'o)< (-iQ.R, (0 iQ.R da
= N_l (2_]1)—3 E E J ( n) (_ ] expi- _‘_j( ) exp(l_'_jl'(t)) > )
j=1 j’'=1
i#’
1 Nl Nlr r ’
=5 1 ) < exp(-i@ .R.(0) exp(iQ .R., (1)) >
1 =5 3
j=1 57=1
j#3’

Similarly for the self correlation function;

N

1 r r
I Gi(g,t) exp(iQ.r) dr = %— E < exp(-iQ .Ej(O) exp(iQ .Ej(t)) >

L

Substituting this result in (3.3.14) gives;
D D .
511,(g,m) = (1/2m) [ Gll'(E’t) exp(i(Q.r-wt)) dr dt
D D . .
Thus sll,(g,m) and Gll'(E’t) form a Fourier transform pair and;

6Y1, (5 t) = (1/(2m3) [ 571, (Q,0) exp(-i(Q.r-u1)) d@ do

similarly;

53(Q,0) = (172m) [ Gy(E,t) exp(i(Q.c-ut)) dr dt
and;

Gi(g,t) = (1/(2n)3) IJ Si(g,m) exp(-i(Q.r-wt)) dQ dw

(3.3.42)

(3.3.43)

(3.3.44)

(3.3.45)

(3.3.46)

(3.3.47)

Substituting (3.3.44) in (3.3.16) and (3.3.46) in (3.3,17) finally gives
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the distinct and self cross-sections in terms of the correlation functions

as;
'dif kL5 oe By, [] 631 (xst) exptica.z-ut)) dr at
Gwe) "k 2 11 (T ) exp(i(Q.x r
11/ (3.3.48)
2 .S — o S
d o k? 1 2 .
(dgde] =% 7% E ey bl II Gl(g,t) exp(i(Q.r-nt)) dr dt

1 (3.3.49)

Equations (3.3.48) and (3.3.49) show that the neutron scattering
cross-section for nuclear scattering is directly related to the partial
pair correlation functions. Thus a measurement of the nuclear cross-section
yields information about the pair correlation functions and hence
information about the relative positions and motions of the nuclei. Note
that it is only for a sample with a single scattering length (ie a
monatomic sample with just one =zero spin isotope present) that the
cross-section is directly related to the pair correlation function rather

than a combination of the distinct and self partial correlation functions.

The physical meaning of the pair correlation functions may be explained

by use of a particle density operator;

S e - R(O)

Pl(E! t) =
1 (3.3.50)

J

| =

where pl(E,t) is the number density of nuclei of element 1 at position r at
time t. Suppose there is an 1 nucleus at position r’ at time t=0. The
number of nuclei of element 1’ which at time t are r away in the volume &r

is pl,(£'+£,t)6£. Averaging this number over all 1 nuclei gives the average
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number of 1’ nuclei in a volume &t which is (r,t) awvay from an 1 nucleus as
(1/N1)Ip1(£',0)p(£+£',t)d£'8£. If ér is allowed to become infinitesimal
then this expression may be interpreted as the probability that a volume dr

which is (r,t) away from an 1 nucleus contains an 1’ nucleus.

Substituting (3.3.50) in equations (3.3.38) and (3.3.39) yields;

D 1 ’ r r ’
Gyy,(xst) = N, J < p1€x",0) py,(E 4L, t) >d£ (3.3.51)

S 1 I ! ]
S5t = g7 I( p1(E7,0) py(r’+r,t) >d£ (3.3.52)

where the prime of p’ is used to imply that terms for which 1-=1’' have been
omitted from the summation. The partial pair correlation functions may thus
be interpreted as follows:

Ggl,(g,t)dz is the thermally averaged probability that, given a nucleus of
element 1 at some position r’ at time t=0, a nucleus of element 1’ (but not
the same nucleus even if 1’=1) is in the volume dr at pesition r’+r at time
t, averaged over all the nuclei of element 1.

Gi(z,t)dg is the thermally averaged probability that, given a nucleus of
element 1 at some position r’ at time t=0, the same nucleus is in the

volume dr at position r‘+r at time t, averaged over all the nuclei of

element 1.

3.4 VAGNETIC SCATTERING.

The purpose of this section is to introduce the theory of the magnetic
scattering of neutrons by unpaired electrons in the scattering system. The

potential describing the magnetic interaction between a neutron and an
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electron of momentum p may be shown (SQUIRES, 1978) by use of standard

electromagnetism to be;

V(E) = - (e/dmyvu2ug ol curl (sx¢/r’) + (1/B)pxd/r” |
(3.4.1)

where +v=1.9132 and Uy (=eh/2mp) and Hp (=eh/2me) are the nuclear and Bohr
magnetons. mp and m, are respectively the proton and electron rest masses.
g is the Pauli spin operator for the neutron with eigenvalues of a
component of +1 . § is the spin angular momentum operator for the electron
with eigenvalues of a component of :1/2 . r is the vector from the electron
to the neutron., Note that a proper treatment of this problem would require

the use of the Dirac equation (HALPERN and JOHNSON, 1939).

Summing the potential (3.4.1) over all the unpaired electrons in the

scattering system and using the master formula (3.2.1) eventually results

in the following expression;

2 2 T

g =1k’ (yrg)” 1 *

s Nk 7m ! £5(@ £.(@ f(ujm) - ¥, (0 )
ii’ —=

[= "

=™

< exp(—ig.gj(O)) exp(ig.gj,(t)) > exp{-iwt) dt

(3.4.2)
vhere r, is the classical electron radius;
ro = (Wo/4m) (e%/m ) (3.4.3)
and where Ej is the magnetic moment in units of Mg of the jth ion;
By = (1/2) &; §j (3.4.4)
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where §j may be spin, total angular momentum J or some effective spin in
the case of a partially quenched orbital angular momentum. Ejl is the
vector component of Ej perpendicular to Q (or the projection of Ej on the
diffraction plane as it 1is sometimes known). fj(g) is the magnetic form
factor of the jth ion as discussed below. The magnetic scattering may be
seen from equation (3.4.2) to depend on the magnetiec fluctuations in the
system in a way analogous with the dependence of the nuclear scattering on
the density fluctuations in the system. However, it should be noted that
the correlation function for atomic positions still enters into the
magnetic cross-section so that magnetie scattering is sensitive to atomic

structure and dynamics as well as magnetic behaviour.

In the derivation of equation (3.4.2) it is assumed that the incident
neutron beam is unpolarised, that the magnetie electrons are localised on
ions at positions Bj and that the electronic moments have negligible effect
on interatomic -forces. A detailed derivation of this result may be found in

SQUIRES (1978), PRICE and SKOLD (1986) or DE GENNES (1963).

Comparison of equation (3.4.2) with equation (3.3.3) shows that the
characteristic scattering length per electron for magnetic scattering is
vr, = 0.539 X 10"14m, and thus under suitable conditions magnetie

scattering can be of the same order of magnitude as nuclear scattering.

h

The magnetic form factor fj(g) of the jt ion is defined by;

fj(g) = [ gmj(g) exp(iQ.r) dr (3.4.5)
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where gmj(f) is the normalised density of the unpaired electrons in the jth

ion;

8ny(8) = &,5(x) - g_5(2) (3.4.6)

vhere g+j(£) and g_j(E) are the charge densities of the two spin states of

h

the electrons of the jt ion. Since gmd(s) is normalised, it follows that;

£5(0) = 1 (3.4.7)

fj(g) thus represents the Fourier transform of the spatial distribution of
the magnetic moment Ej about the centre of the jth ion. yrofj(g) is the
magnetic equivalent of the nuclear scattering length bj y and hence the
magnetic scattering length depends on Q which 1is due to the extended
spatial distribution of an unpaired electron. This is to be contrasted with
the case of nuclear scattering where the scattering centres are effectively

point-like and the scattering length is independent of Q.

Equation (3.4.5) shows that a measurement of the magnetic form factor of
an ion provides a probe of the unpaired electron distribution for that ion.
If the distribution of unpaired electrons is is¢tropic then gmj(£)=gmj(r),

a function of the magnitude of r only. In this case equation (3.4.5) leads

to;
4nrg  (r) = (2/m) [ Qf,(Q) sin(zQ) dQ (3.4.8)

The formalism for Fourier transforms involving isotropic distributions is
considered in much greater detail in section 4.1 which considers nuclear
diffraction from amorphous solids which are generally isotropic. (Equations
(3.4.5) and (3.4.8) are analogous to the equations (4.1.4) and (4.1.30)
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which will be introduced in section 4.1 for nuclear scattering and the

function anrgmj(r) is analogous to the funetion D{r) for nuclear

scattering. However, in the case of the unpaired electron distribution

there is no average density term equivalent to T°(r).)
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CHAPTER 4

THE THEORY OF THRRMAL NEUTRON SCATTERING FROM AMORPHOUS SOLIDS.

4.1 NUCLEAR DIFFRACTION FROM AMORFPHQUS SYSTEMS.

4.1.1 THE STATIC APPROXIMATION,

In a diffraction experiment no energy analysis is performed. That is to
say all neutrons are detected, regardless of final energy. Thus the
cross-section measured in a diffraction experiment (ignoring the energy

dependance of the efficiency of a neutron detector) is;

p (4.1.1)
where p denotes that the integral 1is performed along a path in Q-€ space
dictated by the experimental arrangement. In the case of a reactor source a
diffraction experiment is performed with a fixed incident energy and a
detector which counts at different scattering angles 26. Hence the path p
is one of constant scattering angle. In the case of a pulsed source a
diffraction experiment is performed by using different incident energies at
different times, keeping the detector at fixed scattering angle and

detecting neutrons as a function of time. The path p is thus a path of

constant time.

In the static approximation it is assumed that the incident energy E is
large compared with the excitation energies & of the scattering system. In

this case for all possible scattering events E’=E, k’=k and the scattering
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triangle (3.3.5) gives;

Q= |Q] = Q, = 2ksin® = 4nsind
A (4.1.2)

where Q, is the magnitude of the scattering vector for elastic scattering

and 20 is the scattering angle. That is to say, for all possible scattering
events along the integration path p the scattering vector @ may be
approximated by the elastic value Q, where p crosses the Q-axis. Thus the
integration path p may be approximated by a line of constant Q= Q,

(Qo=bnsin®/N).

Integrating equation (3.3.48) in the static approximation gives the

distinet cross-section as;

E/h
D
do 1 e, boby, D . .
aasa= m E 17171 JI Gll'(E’t> exp(iQ.r) I exp(~iwt) deo dr dt

11 —o (4.1.3)

Since in the static approximation E is large compared with the execitation
energies ha of the scattering system the energy integral of (4.1.3) covers
the whole energy range over which the double differential cross-section is
non-zero and so the upper limit may be replaced by <« . Thus the energy

integral 1is just the integral representation of the delta function 2nd(t);

D

do c .

o - E 1 1 1 II Gll,(r t) exp(iQ.x) &(t) dr dt
5a ll’

_ 3 & Babyy I Gll,(r ,0) exp(iQ.r) dr
117 (4.1.4)
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Similarly;
8 -
%y ey by j G(r,0) exp(iQ.r) dr
s (4.1.5)

Thus the cross-section for a diffraction experiment depends upon the
instantaneous partial pair correlation functions, the Ggl,(E,O) and
Gi(g,ﬂ). { This is to be contrasted with the case of elastic scattering
vhere the cross-section depends on the time averaged correlation functions
Ggl,(g,m) and Gi(z,w) - see gection 4.4.2 . ) The wmeasurement of the
cross-section in a diffraction experiment gives a ‘snapshot’ of the atomic
positions (it 1is customary to discuss ’atomic’ pogitions and ‘atomic’
structure, even though it is really the nuclear positions that are
involved). At t=0 the Heisenberg operators Bj(O) and Ej,(O) commute and

equations (3.3.38) and (3.3.39) become;

0 et
S11.(00) = 7 : 2 < 8(z+R;(0)-R,, (0)) > = 81,(D)
j=1 jr=1
i#i’ (4.1.6)
5
G(r,0) = &(x)
(4.1.7)

where gll,(g) is known as the static partial pair-distribution function.
These are the functions that are used to describe the instantaneous
structure of the sample. Following the interpretation of the generalised
partial pair correlation functions presented in section 3.3.4, the static
partial pair correlation function may be interpreted as follows: gll'(E)dE
is the thermally averaged probability that at a particular time a volume dr
vhich is r away from an 1 atom contains an 1’ atom. Amorphous materials may

generally be taken to be isotropic with the result that the gll'(E) depends
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only on r=|r| ;

g11,(X) = &7,(x) (4.1.8)

An amorphous solid has no long range order. Hence there can be no
correlation between atomie¢ positions at large separations and the
probability that an 1’ atom is found in a2 veolume dr at a large distance

from an 1 atom depends simply on the macroscopic density of 1’ atoms;

Lim g,,,(r) = g7

o CLL7 1! (4.1.9)
vhere;

g]ﬂ-’ = Nl'/v = Cl,N/V = Cl,go y (4-1410)

V is the volume of the sample and g° is the total macroscopic atomic number

density. Using equation (4.1.6);

1 1
j=1 jr=1
J#j’ (4.1.11)

Using the relation &(-x)=8(x) then gives;

g1,1(-1) By, = 8y,,() Ny (4.1.12)

In the case o¢f an (isotropic) amorphous solid (4.1.8) shows that the

direction of r is irrelevant and soj

gl,l(r)/gll,(r) = N1/N1, = clfcl, = gi/gi, (4.1.13)

Using equations (4.1.4) to (4.1.7) the total diffraction cross-section

can be expressed as a function of elastic scattering vector Qu;

Chapter 4 Page 4-4



do S ¢, byb .
T (@) =32 -1+ 13 0 J 811, () exp(iQ,-1) dr
sa 11/ (4.1.14)
where;
S L2
Toa= 16 by (4.1.15)
1

Following equation (4.1.9) it is useful to define a correlation funetion
vhich represents the deviations of the pair distibution function from the
macroscopic density;

g4,,(r) = g14.,(8) - g9,
11 11 1 (4.1.16)

Substituting this in eguation (4.1,14) gives;

I_(Q) = T, + LEe) By6y, € J gy, (D)exp(iQe.x)dr + g, [ exp(ilq.r)dr )
(4.1.17)
The last of these terms is just a delta function;
I°(Q) = (217 &Q) I ¢ BiBy, g°
11 1 (4.1.18)

Thics delta function is the only Bragg scattering from an amorphous
material sinee it is the only delta function in the diffraction
ecross-section. It is indistinguishable from the unscattered beam and is

experimentally inaccessible. Hence the distinct cross-section measured in a

diffraction experiment is;
1 (@) = I (Qa) - I°(Q) - 1°
sa*=*° sa- =2 =0 sa
= f f,cl 5151, f g17.(D) exp(iQe.r) dr

(4.1.19)

Por an amorphous material equation (4.1.8) may be used with the result that
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the two angular integrals of (4.1.17) may bhe performed. The cross-section
is then a function of the magnitude Q, of Q, and does not depend on the

direction of Qu;

isa(Q,) = f f' <y 5151, (4n/Q,) g r gil,(r) sin(Q,r) dr

(4.1.20)

At this stage it is convenient to introduce correlation functions of the

form;

tll,(r) = 4nrgll,(r) = dll'(r) + t?,(r) (4.1.21)
dll,(r) = 4nr( gll,(r) - gi, )y = 4urgil,(r) (4.1.22)
ti,(r) = Anrgi, (4.1.23)

Equation (4.1.20) then becomes;

Qoi_(Qe) =2 E <, boby, [T d,,,(r) sin{Qqr) dr
sa 11, 11 g ° (4.1.24)

One may define total correlation functions;

D(r) = I ¢, 6By, dyy, (1) (4.1.25)
11°
T(r) = 1%* ey BBy, t9.(r) (4.1.26)

Substituting in these two equations from (4.1.10), (4.1.21) and (4.1.23)

gives;

T(r) = D{x) + T°(r) (4.1.27)

vhere;

Chapter 4 Page 4-6



T°(r) = 4nrg® ( I ¢ By y2 (4.1.28)
1

Equation (4.1.24) then becomes;

0°isa(0°) = J D(r) sin{Q,r) dr
0 {4.1.29)

vhich may be Fourier transformed to give;

(-]

D(r) = (2/m) [ Qoi__(Qo) sin(rQ.) dQ. (4.1.30)
0

Hence in the static approximation the correlation function D(r) is related

to the distinct scattering by a Fourier sine transform, and the purpose of

a diffraction experiment on an amorphous solid is to measure D(r).

4.1.2 THE PLACZEK CORRECTION.

In the previous section the cross-section for a diffraction experiment
is calculated by integrating the double differential cross-section along a
line of constant Q and ignoring the effect of detector efficiency. The
result of these approximations is that the integral of equation (4.1.1) is
not carried out correctly over the inelastic region and corrections must be
made to the statiec approximation xesults before the Fourier transform of
equation (4.1.30) is performed. A method for making such corrections which
essentially involves a Taylor's expansion of the scattering function S(Q,w)
about Qp was originally developed by PLACZEK (1952). A similar method is
followed here except that instead of the 1/v detector efficiency considered
by Placzek a general expression for any functiconal form of the detector
efficiency is obtained and then a particular expression for an exponential
detecter efficiency is derived. A 1/v form is not an adequate approximation

for the correct exponential form, as has been discussed by JOHNSOM, WRIGHT
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and SINCLAIR (1983).

If detector efficiency is taken into account then the effective

cross-section measured in a diffraction experiment is;

2
g ,y [o
CH 1) = If(k ) [dsade] de
P (4.1.31)

ﬁ-lﬂ-

where f{k’) is the efficiency of the detector at final neutron wavevector
k‘, p is the relevant integration path in Q-¢& space for the experimental
arrangement used and the elastiec scattering vector Q, (=4nsin@/}) is a
convenient variable for specifying the scattering angle 28. Substituting

from equatiens (3.3.16) and (3.3.17} for the double differential

cross-section gives;

daD
3 . - 1(Q,) = b5y I £ (k) k 11,(0 ©) de
11' (4.1.32)
s —_ s
do s 2 iy K
3, "D - J ey by _[f.(k ) §5,(0,0) do
1 p (4.1.33)

If the incident energy E is much larger than any of the excitation
energies of the sample then the integrand of equation (4.1.31) 1is only
non-zero over a range of energies for which g<<E. In this limit the
integrand may be expanded in powers of &/E and the expressions (4.1.32) and

(4.1.33) are evaluated for a reactor instrument as follows:

The integration path p may be obtained by squaring equation (3.3.5);

0% = 1%+ kr? _2kk! cos(20)

k% - (e/E)k® + (1-(e/E))Y 20,2

2%y (4.1.34)
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Expanding the (1—(8‘/E))1/2 term according to the binomial theorem gives the

path p as;
a? - 0.2 = - (0,2/2) (e/E) + ((26%-0,2)/8) (e/E): + ... (4.1.35)

The integration path p is shown in figure 4.1 together with the constant Q
path used in the static approximation. Taylor‘s theorem may be used to
express a scattering function 5(Q,®w) at a point on the path p ( (w,Qp) in
figure 4.1 ) in terms of its value and derivatives at Q=Q, and the same @
( the point (w,Q,) in figure 4.1 ) by expanding in powers of &:02—002;

5(Q,), = $(Q0,w) + & 51¢Q,, @) + (82/21) S%(Qq,w) + ...
(4.1.36)

where;

s™(0a,0) = | s0,0/30)™ |,
=0 (4.1.37)

The k’/k factor of equations (4.1.32) and (4.1.33) may also be expanded in

povers of (&/E);
kesk = (B /By 2 o (1-(erENY2 2 1 - (e/BY/2 - (ermylre - ... (4.1.38)

The efficiency f(k') of the detector may be expanded about the incident

wavevector k according to Taylor’s theorem;

f{k’') = EO + (k'—k)f1 + (k'—k)2f2/2! * oaen

= fO - flk(e/E)/Z + (fzkz-flk)(e/E)zlﬂ + -.. (4.1.39)
where;

1 P ,n
fn = [d7E(k’)/dk ]k'=k (4.1.40)

At this stage it is useful to define the nth moment Sn(Q) of a scattering
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function S(Q,w) as follows;

S Q) = ] W S(Q,w) de (4.1.41)

o

The =zeroth moment is often known as the structure factor. As explained in
section 4.1.1 the upper limit of the integral in equation (4.1.31) may be
set to = if the incident energy is large, and combining equations (4.1.41),
{(4.1.39), (4.1.38), (4.1.36) and (4.1.35) then eventually gives (YARNELL,
KATZ, WENZEL and KOENIG, 1973) the integral of a scattering function along
the path p as;

[ (k) (R /K)S(Q ) = Fol S(Qe) - (W/2E){ (1+kE /E0)S;(Q0) + 0557(Q0) )
P

2
- (h2/8E%){ (1-KE /EkPE,/E0)5,(Qa) - (Qe+2KP+200KE, /£0)SE(00)

- 055(Q)) + -en ]
(4.1.42)

with;

s7(Q,) = T o” [275(Q,w) /302, do

=0, (5.1.43)

The first few moments of the distinet and self scattering functions have
been calculated by PLACZEK (1952) for a system in which the interactlions

between the atoms depend only on the atomic positions and not on the atomic

monmentaj;
D = D .
511: 0(0) =J Gllf(E’O) exp(lg-_r_) dE
’ 0 (4.1.44)
Syr,1(@) = 0 (4.1.45)
11,1(® = 1.
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D n?g* 1 .
813r,2(® = GH N, 5117,0(® + Ho W, < exp(iQ.r) (p;-Q (p;,-® > (4.1.46)

s] ol = T 63(x,0) exp(iQ.r) dr = 1
’ 0 (4.1.57)
s (@) = ho?/2m (4.1.48)
1,1 1 1.
5 24, 2 .- 2

where Hl is the mass of an 1 atom, El is the average kinetic energy of an 1

atom and By is the momentum ef an 1 atom.

Since the first moment of the distinet scattering function is zero and
the second moment cannot be calculated in practice (since it depends on a
detailed knowledge of the dynamics of the system) a correction can only be
applied to the self scattering cross-section. Substituting (4.1.47),

(4.1.48) and (4.1.49) in (4.1.42) gives (JOHNSON, WRIGHT and SINCLAIR,

1983) the corrected self scattering as;

2 3 . 2 - .
IS(QO) =1 S bl fo [ 1 - 4Cls1n26/u1 + 160251nae/u1 - 8C Klsm26/3ul}3o

L 3

+ (L/20)) (4sin®0/u) + 2K)/3Bo) + .non ] (4.1.50)
where;
uy = Hy/m (4.1.51)
C; = 1 + kofy/2f, (4.1.52)
Cy = (3 + Skof /£y + Kafy/Ey ) / 8 (4.1.53)
Cy = - ( 3kof /£y + KSEy/Ey ) / 4 (4.1.54)

The sin® factors arise from the substitution Qy=2ksin® and the L3 terms

from the substitution h2k2=2mE. The static approximation results of section
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4.1.1 may then be used with IS(Qo) replacing Iga and i(Q,) replacing
1sa(oo)'

For a neutron detector in which the first stage of the detection process
involves an element with a 1/v absorption ¢ross-section the k dependence of

the efficiency takes the form;

f(k) = 1 - exp(-v/k) (4.1.55)
vhere v is a constant. The quantities fllfo and f2/f0 then become:;

£1/8, = -(v/kD) exp(-v/kg) / ( 1 - exp(-v/ko) ) (4.1.56)
£,/fy = (Y/kg) ( 2 - v/ko ) exp(-v/ks) 7/ { 1 - exp(~v/k,) ) (4.1.57)

Of course neutron scattering diffractometers for amorphous materials should

be designed to minimise the Placzek corrections (high incident energy and

lov scattering angles).

4.1.3 TERMINATION OF THE FOURIER INTEGRAL.

Equation (4.1.30) shows that the correlation function D{(r) is related to
the distinet scattering i(Q,) times Q, by a Fourier sine transform.
However, in practice it is only possible to measure the scattering up to
some finite elastic momentum transfer Qmax’ and not to infinity. For
example, in a reactor experiment there is a maximum angle Zemax at which
scattering can be measured (with an absolute limit of Zehax=130°). Hence
for real experimental data the integral of equation (4.1.30) cannot be
performed with the given limits, but only with the upper limit replaced by

Qmax‘ This is equivalent to multiplying the cross-section by a modification

function M{Q,) which is a step function cutting off at 0°=Qmax' The
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resultant correlation funetion is;
Dr(r) = (2/m) | Qai(Qp) M(Q,) sin(rQ,) dQ, (4.1.58)
0

The convolution theorem (SPIEGEL, 1974) may be re-phrased to state that the
Fourier transform of the product of the Fourier transforms of two functions
is equal to the convolution of the two functions. Q,i(Q,) is the Pourier
transform of D(r) ( see equation (4.1.29) ) and so D’'(r) may be identified

as the convolution of D{r) and the Fourier transform of M(Qg);

D'(r) = E D(r’) [ P{r-r’) - P(r+r’) | ar’ (4.1.59)
vhere r‘ is a dunmy variable and;

P(x) = (1/m) E M(Qa) cos(rQ,) dQ, (4.1.60)

Since HM(Q,) is a step function, P(r) has a strong oscillatory component
which extends over quite a large range of r on either side of the main
peak. This leads to spurious features in the correlation function, known as
‘termination ripples’, which are usually reduced by using some sort of

damping function for M{Q,).

The modification function used in this work is that due to LORCH (1969);

M(Qy) = sin(4rQq)/arQ, . Qo £ Q. (4.1.61)
=0 Q > Qoy

wvhere;

o = W (4.1.62)

A detailed discussion of modification functions has been given by WASER and

SCHOMAKER (1953). The function P(r) 1is knowvn as the real space peak
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function, and use of the Loreh modification function results in a peak
funetion of height 0.18760max and full width at half maximum (FWHM)
5.437/0max . The Lorch function is  preferrable to the artifiecial
temperature factor exp(—BOz) used by some authors since the latter is
discontinuous at 0°=Qmax' The effect of the Lorch function is to greatly
reduce termination ripples, although at the expense of some real space
resolution (the step function modification function has FWHH=3.8/0max). The
real space resolution of a measured correlation function is determined by
Qmax and thus a diffraction experiment should be performed to as high a
value of Qmax as possible. This is generally the most important
consideration for the resolution of a diffraction experiment on an
amorphous material, and instruments should be designed to enable the
scattering to be measured to as high a momentum transfer as possible. Other
methods o0f overcoming the restricted Q-range covered by experimental data
include the maximum entropy method (ROOT, EGELSTAFF and NICKEL, 1986) and

the Monte Carlo methed (SOPER, 1988).

4.1.4 THE EFFECT OF ATOMIC VIBRATIONS FOR DIFFRACTION.

The effect for diffraction of the thermal motions of the nuclei may be

h

elucidated by expressing the position of the jt nucleus in the form;

Ri(t) = Ry + u(t) (4.1.63)

where Ej i= the equilibrium position of the nucleus (it is now assumed that
the scattering system is a solid such that the concept of an equilibrium
position 1is meaningful) and Ej(t) represents the displacement of the

nucleus from equilibrium. This notation is chosen to be consistent with
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that used in Chapter 5 which discusses atomic vibrations.

In the static approximation the total diffraction cross-section may be

expressed in the following form by combining equation (4.1.14) and equation

(3.3.42);
N, N.,
s ¢ BB, 1 ¢ o .
Q) =17+ ) 111" &= )} ) < exp(-iQ.R,(0) exp(iQ.R., (D)) >
11 i=1 j’=1
i#j’ (4.1.64)

Use of equation (4.1.63) then yields;

N, N

5 seqbby, 1 & o , .
I(Q) = 1I° + )} 111 N Y ) exp(-iQ.(R.-R.,) )} exp(-iQ.(u. (0)-u.,(0)))
= 1.5 3 =J j =J
11¢ j=1 j’'=1
i#f (4.1.65)

It may be shown (see Appendix E of SQUIRES (1978)) that in the harmonic

approximation;

< expl > = exp( <1572 ) (4.1.66)

where U is a displacement variable. Using this result in equation (4.1.65)

gives;
N. N,
5 ¢, byby, 1 1 g
@ =1+ }°1°1°1 & ) ) exp(~1Q- (R;-R;,)) exp(~(W ¥, ,))
11’ 1 j=1 j’=1
j#j’
exp < Q.Ej(O) g.gj,(O) > (4.1.67)
where;
Wy = < (g.gj(O))2 > (4.1.68)
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If it is then assumed that Wj is the same for all the atoms of an element 1

then equation (4.1.67) becomes;

N, N

S cy byby, 1 S .
I(Q) = I° + } 71 1L o= exp(-¥yy,) Y ) exp(-iQ.(R.-R.,))
= 1 ) 1 ]
11! j=1 j’=1
hEAN

exp < Q‘Ej(o) g.gj,(O) > {(4.1.69)
vhere;
wll' = wl + wl, (4-1.?0)

The term exp(—Ull,) is known as the Debye-Waller factor, and it is this
term which represents the effect of atomie vibrations for scattering. For

an isotropic system;

Wy = @& P> /6 (4.1.71)

3. . . s snis
vhere <u1> is the average square displacement from equilibrium for one atom
of element 1. For an isotropic system the mean square displacement of an

atom in a particular direction « is given by;

2 2
<ula? = <ul> /3 (4.1.72)

If it is assumed that there is no correlation between atomic motions then
the mean square deviation from equilibrium of the bond length for the bond

between an atom of element 1 and an atom of element 1’ is;

2 2 2
<u11,> = <u1u> + <u1,m>

S (ad> el /s (4.1.73)
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On the assumption of small displacements the exponential factor of equation

(4.1.69) may be expanded;

exp < _.gj(O) g.gj,(O) > =1+ < Qu.(0) Q.u.

(1/2) < Q.u.(0) Q.u.,(0) >™ + ... (4.1.74)

As is discussed in section 4.4 the first term (unity) of this (multiphonon)
expansion corresponds to elastic scattering whilst the succeeding terms
correspond to inelastic processes. In the static approximation inelastic
processes are effectively ignored and hence the appropriate expression for

the static approximation is obtained by taking just the elastic term of

equation (4.1.74), leading to;

1@ = I° + ey BBy, exp(-¥py,) [ gf],(x) exp(ig.pdx (4.1.75)
11’

vhere the equilibrium partial pair-distribution function gi},(z) is defined

according to;

eq . N1 Nl’ .
J g (r) exp(iQ.xr) dr = I " exp(-iQ.(R:-R.,)) (4.1.78)
11 j=1 jr=1 J =3
J#3’

Note that the Debye-Waller factor camnot be ignored in the same way as the
exponential of equatien (4.1.74) since it applies for all processes
including elastic scattering. Equation (4.1.75) may be corrected for the

neglection of inelastic processes using the Placzek correction as detailed

in section 4.1.2 .

For diffraction (total scattering) the self scattering term IS does not

involve a Debye-Waller factor. This is to be contrasted with the case of
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elastic scattering (see section 4.4) for which the self scattering term

does involve a Debye-Waller factor (MILDNER and WRIGHT, 1980).

The effect of thermal motions may be included in the expression (4.1.24)
for diffraction from an amorphous solid as follows;

Qi(Q) = ¢y 5151, exp(—Wll,) I dll,(r) sin(Qr) dr

£k
11 (4.1.77)
Comparison with -equation (4.1.58) shows that the Debye-Waller factor
exp(—wll,) plays a mathematical role entirely analogous to that of the
modification function M(Q). Hence equations (4.1.59) and (4.1.60) may be

adapted to yield (WRIGHT and SINCLAIR, 1985);

dll’(r) = EZEE%IIT;] £ di%,(r,) [ exp[— g%ﬁ%;%;]] - exp[ r+i12z)]] dr’

(4.1.78)

Thus in the harmonic approximation the effect 1in real-space of thermal
motion is a Gaussian broadening of the partial correlation functions d(r)

and t{r) (the conveolution of equation (4.1.78) does not affect t%(r) since

this is proportional to r).

4.2 MAGNETIC DIFFRACTICN FROM AMORPEQUS SQLIDS.

4.2.1 SCATTERTNG FROM A PARAMAGNET.

The cross-section for the scattering of unpolarised neutrons by an ideal
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paramagnet in zero magnetic field can be calculated from equation (3.4.2).
For this calculation it is useful to make the following substitution;

W1 (0) - py, 1 (0> = isfaas“éaaa““ja(o)“jfs(‘» .

where o and B are taken over the three Cartesian directions x, y and 2 and
Q is a unit vector in the Q direction. Since the magnetic moments of the
ions of a paramagnet are randomly oriented there is no internal magnetic
field and thus a change in orientation of a particular moment does not
change the energy of the system. Hence the magnetic moment operators Ej
commute with the Hamiltonian of the system and the magnetic moment matrix

element in (3.4.2) is time-independent;

<“jm(0)“jfs(t)> = (ujupj,5> (4.2.2)

For a paramagnet there is no correlation between the moments of different

ions and so;

= —_ 3 : .
<ujuuj’ﬂ> = <uju? <uj'ﬁ> =0 1if j& (4.2.3)

Thus only <ujayjﬂ> terms econtribute to the cross-section. Consider such a
term for which «#B. Each allowed value of uju is equally likely and so it
is only necessary to consider just one ”ja value. For thig fixed value of

uja the expectation value of ujB is zero with the result that;

<”jtuB> =0 if w# (4.2.4)

Hence only <uja2> terms contribute to the cross-section. Since the three

vector components of a moment are equivalent in a paramagnet;

2 2 2 2 2
<. = . . . = . 2.
uJa > (1/3) < qu + uJY + qu > {(1/3) (EJ > (4.2.3)
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Combining equations (4.2.2) to (4.2.3) gives;

2
<ujm(0)uj'8(t)> = Bjj' saﬁ (1/3) <Ej > (4.2.6)

Substituting this result in (4.2.1) yields;

2 2
. - N = . I _ 1/ 4>
<EJL(0) EJrl(t)> SJJ' z (1 au }y (1/3) <EJ
2
= B, 3 . 9.

Equation (3.4.2) then gives the cross-section for a paramagnet as;

Yro) -%E } |f (0)| <u > I < exp(-iQ. (R (0)—R (v))) >

J .. .
axp(-iwt} dt {4.2.8)

Substituting €from equation (3.3.43) gives;

2.p
k! 2 1 22 ,2 S .
Q;e =T (vra) ih 2 ¢y |f1(9>‘ 3 <E1> JI Gl(Ert) exp(-i(Q.x-ut) dr dt
1

="

o,

(4.2.9)
Comparison with equation (3.3.49) shows that the cross-section for a
paramagnet is essentially the same as the self scattering cross-section for
nuclear scattering, the only difference being the replacement of EE with

(ve0)? |f1(g)|2 (2/3) <gl>2 .

4.2.2 MAGNETIC CORRELATION FUNCTIONS.

Following VAN HOVE (1954b) one may define wmagnetic correlation functions

vhich are analagous ta the nuclear correlation functions defined in section

3.3.4

Mr,t) = (/M) I < 1(0) « by, 1 (0> [ < 8(x'-R;(0)) &(z+z-R;,(1))> dx’
33 (4.2.10)
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Note that the vector properties of magnetism result in a correlation
function which depends on the direction of measurement and strictly T is

also a funetion of ﬁ.

4.2.3 THE QUASISTATIC APPROXTMATION.

Integrating equation (3.4.2) in the static approximation (in the field
of magnetic scattering this approximation is known as the quasistatic
approximation, but it is essentially the same as the static approximation

described in section 4.1.1) gives the cross-section for magnetic

diffraction as;

0 ad® s

e " d9 % (4.2.11)

wvhere;

PP 2 *

de =i = (r)® Loy £1(0) £,(0 [T, (5,0) exp(iQr) dr  (4.2.12)
117

doS 2 g . 58

L - (vra) f ¢y |E1(9)| I Tl(E,O) exp{iQ.r) dr (4.2.13)

where the distinct and self partial magnetic correlation functions are

defined in exactly the same way as the nuclear correlation functions.

4.2.4 MAGNETIC SELF SCATTERING.

The instantaneous partial magnetic self correlation function is;
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N
rS(r,0) = (/M) &) I <l
j=1 (4.2.14)

(see equations (4.2.10) and (4.1.7)). For an amorphous solid the property

of isotropy yields the result;

S 2 2
I3(5,0) = = > (o)

3 (4.2.15)

(see equation (4.2.7). Substitution in (4.2.13) gives;

MS
do 2 2 2
° = % {vry) f ¢y [fl(g)| (El> (4.2.16)

Comparison with the results of section 4.2.1 shows that for diffraction in
the static approximation the magnetic self scattering is equivalent to
the total scattering from the same system of moments in the paramagnetic
state. This is a general result £or an amorphous solid in zero field. In
principle the paramagnetic scattering diffraction cross-section should be
corrected for inelasticity in the same way as for nuclear self scattering
(see section 4.1.2). However, this is not done in practice because such a
correction requires a precise knovledge of the moments of the scattering
function and in the case of magnetic scattering such a knowledge does not
exist. Paramagnetic scattering differs in form from nuclear self scattering
because of the form factor. Whereas for nuclear diffraction the self
scattering is almost level with a small droop due to inelasticity, the
diffraction from a paramagnet shows a strong fall-off from its maximum

value at Q=0 and tends to zerc at high Q (~10A_1).
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4.2.5 WAGNETIC DISTINCT SCATTERING.

The instantaneous partial magnetic distinct correlation function is;

e (8 .8 8. )<u. (0. .(0)>
Lm0 =5 3§ <SR (0)-R, (00> § “Cuga'e Vjal®Wyrp
Ly gea oB
&’ (4.2.17)

vhere equation (4.2.1) has been used to express the magnetic moment matrix
element and j#j’ indicates that the summation is only over distinct pairs

of atoms.

In the case of nuclear scattering the equivalent equation to (4.2.12)
(equation (4.1.4)) can be Fourier transformed so that the real-space
correlation functien may be obtained. However, equation (4.2.12) cannot be
Fourier transformed in the general case since Tgl,(E,O) is actually a
function of ﬁ as vell as r. The distinct magnetic diffraction cross-section
may be cast in a more tractable form by following the approach of BLECH and
AVERBACH (1964). (Note that the paper by BLECH and AVERBACH containg
misprints in several key equations which are corrected here.) Following
equations (4.2.12) and (4.2.17) the distinct magnetic diffraction

cross-section may be expressed as;

Q) = (vro)? I og £1(@ £,(0) /N T me., (4.2.18)
11¢ ij’ Jl

vhere the symbol njj' is defined for convenience as;

n,., = I <&8(r+R (0)-R (0))> E
j j o

5 (OR (8,880 <y Oy, (03> exp(ig.r) ax

&
(4.2.19)
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The magnetic part of njj'

the following choice

pair 3j3' by making

chosen to be in

chosen so that ujz=0 .

direction ﬁ in this coordinate system as shown in figure 4.2 . n

then be shown to bej

Njge = T HyuMyex

—51n¢cos¢cosGuJXuJ ' g

the interatomic direction d_..,=

sin ¢+"JY”J ry

may conveniently be evaluated for a typical atom

of axes {(see figure 4.2): x is

-gj and y and z are

r B‘j!

The angles ¢ and O are then chosen to define the

j3r

{l-sin ¢cos 6)—51n¢cos¢cose(u3xuj y Jyuj'x)
. 2 .
-sin ¢cosesin6ujyuj,z> <8(£fgj—§j,)> exp(iQ.x)dr

(4.2.20)

Performing the angular integrals and assuming macroscopic isotropy (ie. the

results do not apply

to a magnetised ferromagnet) by averaging over all

orientations eventually yields the distinect cross-section as;

.M 2 * . .
179(Q) = (vyro)” Z ey £(Q) £,,(Q) J‘ [ 1 sin(Qr)
130 1t 1 whIACY Q
a 2 sin{Qr) _ ] ]
+ all,(r) {17Q7r) [-——ng— cos(Qr) dr (4.2.21)
where;
i P N
ﬁll,(r} = (4nc/N;) I 2 <&(r+ j—Rj,)> <EjL'Ejr1>
j=1 j’=1
j#i’ (4.2,22)
a N1 Ny,
all,(r) = (4nr/N1) —1 y :1 <6(r+RJ—R »” 2<an 5 n> <uJL. s> )

j#y (4.2.23)
where II and 1 indicate components of the moments parallel and perpendicular
to the ij, vector respectively. The superscripts i and a are used to
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denote magnetic isotropy and anisotropy respectively, as is discussed

below. If it is assumed that all the ail,(r)=o then equation (4.2.21)

reduces to;

x .
i@ = (ro)? £ ey £1€Q) £1,€Q) T A7, (x) sin(0r) dr
11/ (4.2.24)

. . . . i
In this c¢ase the partial correlation functions ﬂll,(r) play a role
analogous to that of the functions dll,(r) in nuclear scattering (eguation
(4.1.24)) and they are related to the distinct scattering cross-section by

a Fourier transformation. The A(r) functions may alsoc be expressed (WRIGHT,

1980a) in the form;

ﬁil;(r) = tll:(r) all: (r) (4-2-25)
831,(5) = t;1,(x) by, () (4.2.26)
vhere;

all,(r) = <Ell'El'i> (4.2.27)
bll,(r) = 2<u1n.u1,“> - <Ell'glfl> (4.2.28)

where the bar indicates the average value of the function at the separation
r, Of course the functions all,(r) and bll,(r) cannpt be Jefined in terms
of microscopic variables independently of the nuclear correlation functions

tll,(r). The assumption that all ﬂil,(r)=0 is equivalent to;

2<uln.u1,n> = <Ellf21rl> for all r and all 1 and 1° (4.2.29)

Hence equation (4.2.24) applies when there is no correlation between the
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magnetic moment directions and that of the interatomic direction vector
d;;, 1e. the distinct cross-section may be Fourier transformed to obtain a
real-space correlation function in the case where there is no local
magnetic anisotropy { thus the supersecripts of ail,(r) and ﬂil,(r) indicate

microscopic magnetic isotropy and anisotropy respectively ).

4.2.6 FOURIER TRANSFORMATION OF MAGNETIC DIFFRACTION DATA.

There are additional complications in the Fourier transformation of
magnetic diffraction data, as opposed to nuclear diffraction data, due to
the magnetic form factor £(Q). The situation is analeogous to that of X-ray
diffraction with the X-ray atomic scattering factor replaced by the
magnetic form factor. The X-ray atomic scattering factor arises from all
the electrons in an atom whereas the magnetic form factor arises only from
a few unpaired (magnetic) electrons in outer orbitals. Hence the magnetic
form factor falls off more rapidly with @ than the X-ray atomic scattering
factor. The effect of the magnetic form factor is to restrict real space

resolution.

For a sample with a =single magnetic species for which the magnetic

anisotropy is negligible equation (4.2.24) becomes;
0i(Q) = (vro)? ¢ £2(0) § A'(r) sin(ar) dr (4.2.30)

where y is the number concentration of magnetic ions. By analogy with

equations (4.1.29) and (4.1.30) for nuclear diffraction;

.M
p, . 2 1 QiT(Q) _. (4.2.31)
) = % GG | Fqy sintzo do
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The OQ-dependence of the magnetic form factor is the cause of the essential
difference between magnetic diffraction and nuclear diffraction. In order
to obtain the correlation function ﬁi(r) vhich relates to nuclear positions
the experimental data must be divided by £f2(Q) bvefore Fourier
transformation. One may also define a distribution function given by the

direct Fourier transformation of QiH(Q);
BE(x) = (2/m) (1/ey(vra)?) § QiT(Q) sin(r0) de (4.2.32)

ﬁi(r) is the magnetic equivalent of FINBAK’s (1949} electronic distribution
function for X-rays (ie. ﬂé(r) is a2 correlation function for unpaired
electrons in different ions, whereas ﬁi(r) relates to the atomic positions
as with the nuclear correlation fupction d{(r)). Since the magnetic
electrons of an atom are more widely distributed than the nucleus the
funetion ﬁi(r) is breader than the function ﬁi(r). Hence the process of
dividing by £2(Q) to obtain Al(r) (as in equation (4.2.31)) is known as

‘sharpening’ (PATTERSON, 1935).

Provided that the experimental data extends to a reasonably high 0max
the Fourier transformation of equation (4.2.32) does not require a
modification function (see section 4.1.3) since the effect of the magnetic
form factor is to cause iH(Q) to fall off rapidly as Q increases, In effect
£2(Q) behaves as a modification function. However, as a result of the
process of sharpening a modification function is required for the Fourier

transformation of equation (4.2.31) in the same way as for nuclear

diffraction.
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4.3 SMALL ANGLE NEUTRON SCATTERING.

The term small angle scattering (SAS) is conventionally taken to refer
to diffraction in the regime for which the momentum transfer Q is swall
compared with the first peak Ql of the structure factor (or the smallest
reciprocal lattice vector in the case of a crystal). Since the range of Q
covered in a SAS experiment is small c¢ompared with that covered 1in a
conventional diffraction experiment (a so-called wide angle scattering
experiment) it follows that the range of r covered in a SAS experiment is
large compared with that covered in a conventional diffraction experiment.
Thus a SAS experiment is suitable for studying structures which are large
compared with interatomic distances in condensed matter. In practice the
range of Q accessible to small angle neutron scattering (SANS)
diffractometers extends at most from a few thousandths of an inverse
Angstrom (A_l) to perhaps one inverse Angstrom. Thus the technique is
suitable for studying structures with dimensions of tens or hundreds of
Angstroms. For length scales of this order of magnitude the individuval
scattering centres in condensed matter are not resolved. Hence the
correlation function formalism developed previously is not appropriate and
the theory of SANS way be developed by commencing with an equation deduced
before the introduction of correlation functions. Integrating equation

(3.3.23) in the static approximation yields the coherent differential

cross-section as;

N 2
El b.exp(iQ.R.) |
= J ) (4.3.1)

where the j-summation is over all atoms, Ej is the coherent scattering
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length appropriate to atom j and the time-dependence of the Bj and the
thermal averaging have been taken as implicit. Since the SANS regime is
concerned with length scales which are large 1in comparison with the
separation of the discrete scattering centres it is appropriate to

introduce a continuous scattering length density;
pb(E) = f El Pl(E!O) (4'3'2)

vhere pl(E,t) is defined by equation (3.3.5Q0). Equation {4.3.1) then

becomes;

dUCOh

1 : 2
35 =5l J e, exp(it.p) dr | (4.3.3)

It is convenient to separate pb(E) into an average value p; and a term
pB(E) representing fluctuations about the average value;
pp{E) = pp + pi(E) (4.3.4)

The contribution to the coherent differential cross-section (4.3.3) due to
the average density pg is proportional to &(Q) (cf. equation (4.1.18)) and
for Q>0 the coherent differential cross-section is given by;

coh

= % | I ep(E) exp(iQ.r) dr |2

Q.lﬂ-
w0lg

(4.3.5)

Thus a SANS experiment enables fluctuations in the scattering length
density over distances of order tens or hundreds of Angstroms to be

observed. In the case of a perfectly homogeneous sample there is no SANS.

For a given scattering length distribution the cross-section may be
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evaluated by application of equation (4.3.5). However, it is generally not
possible to determine pb(E) from the measured cross-section since the
available range of Q is not usually adequate for the Fourier transformation
methods introduced in section 4.1 to be used. Hence the approach used to
analyse SANS measurements is generally to fit a model function to the

reciprocal-space data.

In the limit Q1<<1 , vhere 1 is the characteristic length over which the
scattering length density varies (the particle size), one may use the
Guinier approximation (GUINIER, 1939). In this approximation the coherent
differential cross-section for a sample with Np particles of homogeneous
scattering length density pbp embedded in a matrix of homogeneous

scattering length density Pbm is given by;

h
ds®° 2,2 2 2.2
30 = (Vpr/N) (pbp—pbm) exp(-Q RG/3) (4.3.6)
vhere R. is the radius of gyration;
Ré - (rzlvp) dr (4.3.7)
1)
p

with the integration over the volume Vp of a particle. In the limit where
Q1>>1 one may use the Porod approximation (POROD, 1951) which predicts a

coherent differential cross-section for the same sample given by;

h
ds"° 2 44
15 = (2uApr/N) (pbp—pbm) Q (4.3.8)

vhere Ap is the surface area of a particle.
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In the case of magnetic scattering the  coherent differential

cross—-section may be obtained by integrating equation (4.1.2) in the static

approximation;
coh N
do 1 2 s 2
o - (me)T | 52wy exp(1Q.Ry) | (4.3.9)

where the form factor fj(g) has been omitted since it is effectively unity

in the SANS regime {equation (4.1.7)). One may introduce a continuous

magnetisation density;

N

M(r) = I u, &(r-R.) (4.3.10)
== J =1_J = -]

so that the coherent differential cross-section is given by;

coh
g

="

(rrod? | M@ |2

=l

ol
L)

(4.3.11)

where M,(Q) is the component of the Fourier transform of the magnetisation

density perpendicular to Q;
M(Q) = | M(x) exp(iQ.r) dr (4.3.12)

If the magnetisation density M(r) is homogeneous then M(Q) is proportional
to 8(Q) and there is no observable S5ANS. However, if there are fluctuations
in the magnetisation density then these may be observed by SANS, just as
vith fluctuations in the scattering length density. Hence SANS is a

technique by which the onset of magnetic order may be observed.

For a more complete discussion of the theory of SANS the reader is
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referred to the Chapter by KOSTORZ (1979).

4,4 NUCLEAR INELASTIC SCATTERING IN THE INCOHERENT APPROXIMATION.

4.4.1 MULTIPHONON EXPANSION.

To elucidate the effect of atomic vibrations for nueclear inelastice

scattering the substitution of equation (4.1.63) is used in equations

(3.3.14) and (3.3.15);

N, N >
D N 1 1
S11,(Qrw) = Eiﬁi ) 3 I exp(-ig.(gj—gj,)) exp(-ig.(gj(o)-gj,(t)))>
j=1 j'=1 -=
J#
exp(-iwt) dt
(4.4.1)
s . . .
§,(Q,w) = T, ) J <§xp(—19-(gj(0)—gj(t)))> exp(-iwt) dt
j=1 -=
(4.4.2)

vhere the scattering functions bhave been expressed as a function of the
magnitude of Q only since they must be isotropic for an amorphous solid.

Using the harmonic approximation result of equation (4.1.66);

D Ny By @
1 :
Sy7,(Q,0) = o 5 I exp(-10. (B;R;,)) exp< Q.u;(0) @y, (1) > x
jol jr=1 o
j#3’
exp(—Wll,} exp({-iwt) dt
(4.4.3)
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.gj(t) > exp(—wll) exp(-iwt) dt

¥4 ]
'—I
e
o
E
L
]
gl
[~
B & B
1]
>
o]
~
=]
=
~~
o
L
=]

(4.6.4)

vhere the Debye-Waller factor exp(—Wll,) is as defined in section 4.1.4 .,

On the assumption of small displacements Eﬁ the exponential containing the
displacements may be expanded;

u,,(t) >

Yy () > +

(1/2) < Q.u;(0) Q-uy, (1) 2 4 ... (4.4.5)

exp < Q'Eﬁ(o) _'Ejr(t) >=1 3% £ Q.gj(O) Q.

The scattering functions may then be expressed in a form known as the

mul tiphonon expansion;

s?/5¢q,0) = sP5 % q,w) + £ Y5 P(q,w) (4.4.6)
p=1
D/5,el . .
where § (Q,w) corresponds to the first term of the expansion (4.4.5)
and SD/S’p(Q,m) corresponds to the p+1th term of (4.4.5).

4.4.2 ELASTIC SCATTERING.

The first terms of the multiphonon expansion arej

N N

D,el 1 & &
r _- = -1 — -

$117 Q@) = N } ) exp(-i0-(R;R.,)) exp(Hyy,) 8(w)

j=1 j'=1

J#j
(4.4.7)

and;
s°®l(g,w) = exp(-W;;) 8(w) 4.4.8
1 @) = @XPL-Wy (4.4.8)
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where it has been assumed that atemic thermal motions are uncorrelated
(VRIGHT and SINCLATIR, 1985). The delta-function &(w) in equations (4.4.7)
and (4.4.8) indicate that these terms represent elastic scattering. The

nature of elastic scattering may be elucidated by use of the following

separation;
G(E!t) = G(r,=) + G’(E't) (4.4.9)

where G(r,t) is any correlation function of the type introduced in section
3.3.4 (see equation (3.3.36)), G(r,«) (TURCHIN, 1965) is the time-averaged
part of G(x,t) and G'(r,t) is the time-dependent part. The ¢orresponding
scattering function §(Q,w) is related to G(x,t) by a double Fourier

transformation (see for example equation (3.3.44));
S(Q,w) = (1/2m) [§ G(r,t) exp(i{Q.x-et)) dr dt

- [ 6(x,®) exp(iQ.r) dr &w) + [f G*(r,t) exp(i(Q.r-wt)) dr dt

(4.4.10)

The first of these terms represents elastic scattering vhilst the second
represents inelastic scattering. In fact the inelastic term is not zero at
w=0, but it is completely overwhelmed by the elastic term. Equation
{(4.4.10) shows that the elastic scattering is determined by the
time-averaged correlation function G(r,=). This is to be contrasted with
the case of total scattering, discussed in section 4.1, which is determined
by the instantaneous correlation function G(r,0). It is also apparent that
the elastic self scattering is modulated by a Debye-Waller factor term,

unlike the total self scattering (see section 4.1.4).
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Prom equations ¢3.3.16) and (3.3.17) the elastic cross-section may be

derived;
1 D,el "7 _5,el
de® = £ ¢.B.B,, SZI%(Q) + E e, b ST EeqQ)
& o 1w p 1171 (4.4.11)

Using equation (4.1.73) and equations (4.4.7) and (4.4.8);

el
g

ID.-

S L2
= I(Q) - I¢Q) + f cy by exp(-¥;) (4.4.12)

(=N
w0

Strictly equation (4.4.12) is only correct in the limit that all inelastic
scattering is incoherent (PRICE and CARPENTER, 1987), ie. correlaticns in

the thermal motions of the atoms have been ignored (WRIGHT and SINCLAIR,

1985).

4.4,3 NORMAL MODES.

In the harmonic approximation the displacements gj may be expressed in
terms of a sum over the 3N normal modes of the scattering system {see

Appendix G of SQUIRES (1978));

N
L] s . s*
ga(t) = f (h/ZHjuE) ( Ej exp(-lmst) a_ + e

. +
e: exp(in_t) a_ )
s=1 J S S

(4.4.13)

where Hj is the mass of the jth atom, W is the angular frequency of the
mode s and g? is the polarisation vector in this mode for the jth atom
(including the wavevector dependence). ag and a; are the annihilation and

creation operators for the mode s. Substitution of equation (4.4.13) in the

second term of equation (4.4.6) yields;
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D,1 1 &
] - = -1 - -
$11:(Q,®) = 2N, 3 Y exp( 19'(53' 133.,)) exp(-¥1,,) x
j=1 jr=1
j#3
3N
3 R (2.5 (Q.e%,) [<n >8(e+e ) + <n +1>8(w0 )]
m§7(H1H1,) ="=j ="=3 s s 5 2
s=1
(4.4.14)
and;
N N
s,1 1 1 h 5,2
57'7(Q,6) = 5 3 exp(-¥,,) EW—H— [Q.gjl [<n>8(wru ) + <o +1>8(w-0 )]
1., s 1
J=1 S=1
(4.4.15)
where (ns> is the population factor for the mode s given hy;
<n > = 1 —
5 exp(th/kBT)—l {4.4.16)

The #&-functions of the p=1 terms indicate that these terms represent the
annihilation or creation of one normal mode of the sample (ie. a phonon).
In a similar way it is found that the pth terms of equation (4.4.6)
represent p-phonon scattering, and collectively the terms for which p>1
represent multiphonon scattering. The pth term may be seen to vary as
(hQZIZHw)p so that these terms hecome decreasingly significant as p
increases (typically (hQ2%/2Mw)~0.05), and generally introduce a relatively

smooth and low background under the one-phonon structure,

4.4.4 INCOHERENT APPROXIMATION.

A frequently wused approximation in the analysis of scattering from
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amorphous and polycrystalline materials is the incoherent approximation.
This assumes that when equation (4.4.14) is averaged over a significant
range of Q, the interference effects arising €from the phase factor
exp(-ig.(gj—gj,)) cancel out so that the distinet scattering function
averages to zero. This assumption may be accounted for by considering the
amplitude-dependent factor (g.gi)*(g.g?,). In the approximation that there
is no correlation between the motions of atoms the directions of g? and e},

are unrelated so that;

@.e9* (@.e5) = eH? s, /3 (4.4.17)

This is analogous to the case of an ideal paramagnet (equation (4.2.6).
Equation (4.4.17) shows that in the limit of totally uncorrelated atomic
motions the distinct scattering function of equation (4.4.14) is zero. Thus
it follows that the distinect scattering function is sensitive to
correlations between the motions of atoms and hence it is by use of the
distinct inelastic scattering that phonon dispersion relations may be
measured. In practice, as has been shown by CARPENTER and PRICE (1983),
the distinct scattering function is not zero and consequently the
cross-section measured in an inelastic scattering experiment is averaged
over a range of @ so that the distinct contribution (which oscillates about
zero) averages to zero. The Q-averaged cross-section may then be

interpreted in terms of the self scattering function alone.

The vibrational density of states (VD0OS) may be defined to he (see

Chapter 5);
3N

g/ (w) = El a(upwé) / 3N {4.4.18)
5=
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Note that for convenience the normalisation of this definition of the VDS
differs from that used in Chapters 5 and 1l4. Using the expression for g’{w)

in equation {4.4.13) yields the phonon creation part of the one phonon

partial self scattering function as;
12

S,+1 h ,
8] (Q,@) = exp(-¥ ;) f&ﬁz 3|Q.gl <n+> g’ (w)

(4.4.19)

where p=+1 has been used to denote phonon creation and the bar of the
amplitude-dependent factor indicates an average over all modes at frequency
w. Thus the self inelastic scattering provides a means by which g’(w) may

be measured.

At this stage it is useful t¢ define a total (ie. not partial) self

scattering function, since this is the funetion vhich is addressed

experimentally (see equation (3.3.17)};

sSa,w) =

Pl
= K

5
i S Sl(O,m) (4.4.20)

The one phonon creation part of this is;

H N

2
§,+1 _ hQ .
5 Q,w) = o <n+1> g’ (w) f cy b

1 2

Experimentally it 1is useful to define a generalised density of states

(CARPENTER and PELIZZARI, 1975) G(Q,w) by;

2

s5'710q,0) = exp(-2W) (n0%/2fw) b <m+1> 6(Q,w) (4.4.22)

Chapter 4 Page 4-38



where;

- 1 a
Bl ze (4.4.23)
1
b2 - L e, b2 (4.4.24)
— cl l - -
1
T-02 ad /s (4.4.25)
5 2
wh = £ ey b (4.4.26)
1

In the incoherent approximation;

G(Q, ) = g’ (w) bi B exp(-20)) 318e [ 7 ( <0 M) exp(-2M) ) (4.4.27)

L
1
and the effective VDOS measured in an experiment is;
)
E relw) = |7 G{Q,w) d0 / (Q,-Q,) (4.4.2B)
eff 2771
Q
4 problem associated with the use of the incoherent approximation is
that there is no simple means of assessing whether the distinet scattering
has actually averaged to zero. Recently PRICE and CARPENTER (1987) have
suggested that it may be possible to use the information which is present
in the distinct scattering (and which is discarded in the incoherent
approximation) to obtain useful information about the network dynamies of
amorphous solids. However, at present very little work has been done to
either model or measure the wavevector dependence of the phonon spectra of

amorphous solids.

In the case of a sample for which all atoms are equivalent (the
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so-called Bravais lattice) the amplitude factor |Q.§1|2 of equation
(4.4.27) may be set to one because of the orthonormality of the basis
vectors of the normal modes. Thus in this case a direct measurement of
g’(w) 1is obtained. This simplification cannot be made for a polyatomic
sample and hence equation (4.4.27) shows that an incoherent approximation
analysis of inelastie neutron scattering data yields an effective
amplitude-weighted VD0OS. However, provided that the amplitudes of vibration
do not vary sharply with energy which would be unreasonable, geff(m) yields

a good experimental approximation to g’{w).
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CHAPTER 5

NETWORK DYNAMICS - INTRODUCTION AND THEORY.

5.1 INTRODUCTION.

The study of atomic vibrations in crystalline materials, known as
lattice dynamics, is now a fairly well understood subject. It is the
purpose of this chapter to introduce the equivalent field of study for
amorphous materials with a CRN structure, a subject which is termed

'network dynamics.’

As discussed in chapter 2 an amorphous solid may be regarded as a
crystal with an infinite unit cell. Thus for an amorphous solid the first
zone in the Brillouin scheme becomes the point g=0vand the wavevector q is
not useful in classifying the vibrational modes. The concepts of Brillouin
zones and phonon dispersion curves lose their meaning (see LEADBETTER
(1973) for further discussion of this topic) and the important quantity for
describing vibrational excitations in amorphous solids is the vibrational
density of states (VDOS). The VDOS g(w) is defined so that g(w)dw is the

number of modes with angular frequency in the range (w,w+dw).

The experimental technique most widely used for observing vibrational
excitations in amorphous solids is Raman scattering. However, caution must
be exercised in the interpretation of Raman spectra since the signal is not
simply related to the VDOS (there is a matrix element involving the
polarisability of the modes which cannot easily be determined). Vibrational

excitations may also be observed by means of inelastic neutron scattering,
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infrared absorption (IR), tunnelling spectroscopy and electron energy loss
spectroscopy. Inelastic neutron scattering is the best technique for a
detailed study of the VDOS of an amorphous solid over a significant energy

range since the inelastic neutron scattering signal is related to the VDOS

in a relatively simple and clear way.

As 1is shown in sections 5.2 and 5.3 the VDOS of a solid depends on the
interatomic forces and the atomic coordinates and masses. Since the masses
are known and the forces are fairly well understood the dependence on
atomic coordinates may be taken advantage of and used as a probe of SRO and
IRO in amorphous solids. In this way measurements of the vibrational
properties of an amorphous solid provide complementary structural

information to the results obtained from diffraction.

WEAIRE and ALBEN (1972) have pointed out that the phonon spectra of
amorphous Si and Ge are in fact very similar to a broadened version of the
VDOS of the corresponding crystalline phase. Since the SRO is similar in
both phases (see section 2.5.1), this suggests that it is the SRO which
essentially determines the VDOS and then the broadening (and lack of Van
Hove singularities) for the amorphous phase is due to disorder. Earlier
calculations by DEAN and BACON (1963) have shown that the modes of
two-component disordered chains are strongly localised at intermediate and
high energies. In 1973 THORPE showed that the general form of the VDOS of
tetrahedral materials can be accounted for by considering the vibrational
characteristics of a single structural unit (ie. one tetrahedron). More
recently GALEENER, BARRIO, MARTINEZ and ELLIOTT (1984) have shown that

regular rings in a network can have vibrational modes which are decoupled
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from the rest of the network. These modes produce anomalously narrow
features in a vibrational spectrum which consists otherwise of broad bands
and thus vibrational spectroscopy provides a probe of IRO in amorphous
solids. Information about IR0 obtained from vibrational spectra is
especially useful since IRO is much more difficult to deduce f£from
diffraction data than is SRO. So far most of the calculations relating to
vibrational excitations of amorphous solids have been for tetrahedrally

coordinated materials.

There is a number of ways of calculating the VDOS of a CRN structure.
These may be divided into analytic approaches and direct numerical
calulations. Analytic methods are limited in the sense that they cannot
produce a calculation of the whole VDOS for a realistic structure and force
model. However, they are still of considerable value as they can provide a
physical explanation of many of the salient features of the VDOS such as
the general positions of bands and the occurrence of the sharp 1lines
associated with regular TR0 structures. (See for example SEN and THORPE
(1977), GALEENER (1979), AGRAWAL (1985) and GALEENER (1985).) Direct
numerical methods rely on the use of a computer to solve a very large
number of equations derived from a ball-and-stick model of the type
described in section 2.5.3 . There are several techniques for performing

such a calculation, as is discussed below.

The earliest work relating to the vibrational excitations of disordered
solids was that performed in the 1960s on two-component disordered chains.
This work was useful in indicating some of the general ideas required to

understand vibrational excitations in amorphous solids, especially
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localisation, but it does not provide results which can be directly related
to real materials. In particular it is not possible to reproduce the full
effect of 3D topological disorder in a one-dimensional (1D) model. DEAN

(1972) has given as extensive review of this work.

The first investigation of the atomic vibrations for a realistic
structural model was that of BELL, BIRD and DEAN (1968) who calculated the
VvDOS for 3102, GeO2 and BeF2 from a tetrahedrally coordinated
ball-and-stick model. The calculation method was based upon a use of the
negative eigenvalue theorem (NET) (DEAN and MARTIN, 1960) to determine the
distribution of the eigenvalues of the dynamical matrix (see section 5.2)
and a discussion of this method is delayed until chapter 14 since the same
method was used for the calculations reported in this thesis. The
calculations were found to agree moderately well with observed vibrational
spectra. In later work BELL and DEAN (1972) calculated the eigenvectors in
addition to the eigenvalues. It was shown that the modes are fairly
extended at low energies (for long wavelengths the material is effectively
a continuum and the disordered structure is not important) but show a
tendency to greater localisation with increasing energy. The localisation
wvas found to be most accentuated near the band edges, as is also generally
found to be the case for electronic states. ALBEN, WEAIRE, SMITH and
BRODSKY (1975) have performed similar calculations of the vibrational

spectra for Si and Ge. The results were found to compare favourably with

Raman and IR data.

Another technique for calculating the VDOS from a ball-and-stick model

is the recursion method, developed for vibrational calulations by MEEK
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(1976). In this method the local density of states (ie. the density of
states weighted by the amplitude squared of each mode at one particular
atom) 1is calculated by terminating a series of recursion relations after a
finite number and then averaging over perhaps ten of the central atoms of
the model. MEEK calculated the VDOS for elemental tetrahedral models and
compared the results with optical spectra for Ge, yielding information
about the proportion of odd- and even-membered rings in the network. The
recursion method has also been used by DAVIS, WRIGHT, DORAN and NEX (1979)
who computed the VDOS for models of As, showing that the best model is one
with no constraint on ring order. The VDOS of a ball-and-stick model may
also be obtained by the equation of motion method, a review of which has
been given by BEEMAN and ALBEN (1977). This method involves following the
behaviour with time of a central portion of a model after the atoms have
been given random initial displacements. BEEMAN and ALBEN studied the
vibrational excitations for four-coordinated (Ge-like), three-coordinated
(As-like) and two-coordinated (Se-like) elemental amorphous semiconductors

and a reasonable agreement with optical data was obtained.

A potential problem involved in a calculation of the VDOS for a
ball-and-stick model is that the surface atoms can be expected to
contribute highly localised ‘defect’ modes to the VDOS. This is undesirable
since the aim is to model the VDOS of the bulk material. In the case of the
recursion method and the equation of motion method this problem is overcome
by only using the atoms in a central portion of the model to calculate the
VDOS. Another approach is the ’‘cluster-Bethe-lattice’ method (LAUGHLIN and
JOANNOPOULOS, 1977), originally developed by JOANNOPOULOS and YNDURAIN

(1974) for calculations of the electronic density of states. In this method
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an appropriate Bethe-lattice is grafted onto each of the unsatisfied
surface atoms. A Bethe-lattice, or Cayley tree as it is otherwise known, is
an infinitely branching (ie. no rings) network of atoms. LAUGHLIN and
JOANNOPOULOS (1977) have used the cluster-Bethe-lattice method to
investigate the relation between vibrational excitations and SRO in SiOz.
BARRIO, GALEENER and MARTINEZ (1984) have shown that also a Bethe-lattice
alone can be useful in understanding vibrational excitations of a network.

Another problem with finite sized ball-and-stick models is that there is a

minimum wavelength for which the VDOS can be calculated.

5.2 THE EIGENVALUE EQUATION.

The theoretical background to VDOS calculations is developed here in
detail in order that the equations may be expressed in a form particularly
suited to the computations described in Chapter 14. It is found that a
notation based upon sub-matrices and outer products (see Appendix A) is
most appropriate. In the following analysis it is assumed that the
Born-Oppenheimer approximation, or adiabatic approximation as it is
otherwise known, can be made. That is to say it is assumed that it is a
good approximation to express the potential energy as a function of nuclear

coordinates only and not of electronic coordinates.

Consider a disordered system of N atoms. Clearly the energy eigenvalues
are of prime importance in characterising the vibrational properties of
such a system. It can be shown that, in the harmonic approximation, it is
possible to derive the eigenvalues of the system purely by considering the

classical problem (DEAN, 1972), and this is done as follows:
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Denote the equilibrium position of the ith atom by Bi’ and let it suffer
a small displacement u,. If it is assumed that the motions of the atoms are
coupled by harmonic forces, then the most general expression for the

equation of motion of the ith atom is;

gij Ej (5.2.1)

vhere the sub-matrix gij is a 3x3 matrix (for a 3D model) whose elements
depend upon the masses of the atoms i and j, the force constant(s)
describing the interaction between i and j, and the relative positions of i
and j. The double dot indicates a double differentiation with respect to
time and the double underline indicates a matrix. At this stage it is
convenient to make a transformation from the coordinates u, to normal

coordinates e defined by;

-1/2
e =my u; (5.2.2)

Equation (5.2.1) then becomes;

N

. == I w.. e (5.2.3)
i j<1 =ij =j

| 1

in which the sub-matrix !ij is termed the dynamical sub-matrix. Equation
(5.2.3) describes a set of coupled equations which can be expressed in

matrix form as;

§--¥y (5.2.2)

where y is a column matrix vhose elements are the e. and the dynamical

matrix W is a 3Nx3N matrix whose elements are the LAYR Note that as a
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consequence of the transformation to normal coordinates and Newton’s Third
Lawv of Motion W is a symmetric matrix ( wij = wji ). Thus the purpose of
the transformation to normal coordinates is to cast W in symmetric form

wvhich is of considerable advantage for calculations.

Substituting the Fourier transform z(t)=(2n)—1/2

I§(w Yexp(-iwt)dw’ (all
integrals in this section are assumed to be over the whole range of the

relevant variable) and taking the derivative inside the integral gives;

-1/2 , ~1/2
T w

_(2m) 2 §(o') exp(-iw't) do' = —(2m)

V [ §(o') exp(-iw’ t)dw’
(5.2.5)

Taking the scalar product [...... exp(iwt)dt then gives;

I w'z ¥(w') [ exp(-i(w'-w)t) dw’ dt = g J §(w) | exp(-i(w'-w)t) deo’ dt

(5.2.6)
Using the integral definition of the delta function
Jexp(-i(w’ -w)t)dt=2n8(w’'-w) this becomes;
2n | w’z J(w') 8(w'-w) do’ = 2n ¥ | §(w') 8(w' -w) do’ (5.2.7)
- 2 .
Vy=a"§% (5.2.8)

Thus the frequencies of the normal modes of the system are given by the
eigenvalues of the dynamical matrix W. The VDOS of the N atom system may

then be defined to be (THORPE, 1976);

g(w) = Z &(w-au) (5.2.9)
s

vhere the summation is taken over the eigenvalues Wy from equation (5.2.8).

Hence a calculation of the distribution of the eigenvalues of W yields the
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VDOS of the system.

In order to calculate the VDOS of a system its dynamical matrix W must
first be calculated. The dynamical sub-matrices gij depend upon the
interatomic forces and the atomic coordinates and masses. The atomic masses
are known and the dependence on the atomic coordinates 1is the basic
principle which underlies the purpose of these studies. The idea of

interatomic forces is fairly well understood and they are discussed in the

next section.

5.3 INTERATOMIC FORCES.

All the force models discussed in this section are harmonic since the
calculation method used 1in Chapter 14 is only suitable for a system
described by harmonic forces, as is the case with virtually all methods.
The true forces in solids are not harmonic (as evidenced by the phenomenon
of thermal expansion for example), but it has been found that many
properties can be explained very well by models using harmonic forces.
However, DE LEEUV and THORPE (1985) have recently suggested that the long
range Coulomb force between atoms (ions) may in fact be required to
understand fully the VDOS of some glasses. Coulomb forces cannot be
directly included in a harmonic force model. Most calculations in the
literature consider only topological disorder and ignore any possibility of
a variation of force constants from site to site, resulting from
differences in atomic environment. However, this may not always be an

adequate approximation and this issue is discussed further in Chapter 14.
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5.3.1 CENTRAL FORCES.

The simplest model for describing the forces between the atoms in a
solid 1is that of central forces. 1In this model forces operate only along
the interatomic direction and are proportional to the relative displacement
from equilibrium along that direction. Whilst central forces can be useful
in providing a qualitative understanding of atomic motions, they are too
simplistic for use in a VDOS calculation. If the VDOS of a system is
calculated using only central forces it is found that a large number of
modes occur in a delta function at the origin, ie with =zero energy. This
may be understood as follows (THORPE, 1976): For an N atom system there are
3N degrees of freedom. Central forces may be thought of as a constraint on
the system involving keeping all the Nb bonds fixed in length (eg Nb = 6N/5
for B203). It can be shown that these constraints are linearly independent
and so there are 3N—Nb degrees of freedom left (9N/5 for B203). This means

that there must be 3N-Nb zero energy eigenvalues. Detailed calculations by

WEAIRE and ALBEN (1972) and the author confirm this.

The equations for central forces are not given here since they may
easily be obtained from those for Born forces in section 5.3.2 by setting

n
the force constants Xi; to zero.

5.3.2 BORN FORCES.

In the BORN (1914) force model a small non-central term is added to the
central force expression and this overcomes the instability discussed in

section 5.3.1 . The non-central force between two atoms is taken to be
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proportional to the relative vector displacement of the two atoms
perpendicular to the interatomic direction, and the central force is as
described above. This force model has been most successful in forming a
quantitative understanding of the vibrational and related properties of
solids. However, the Born force model has the theoretical drawback that it
is not rotationally invariant. That is to say, a macroscopic rotation of
the whole sample does not leave the potential energy according to the Born
force model unchanged. (Note that a VDOS calculation based upon a force
model which does satisfy the requirements of invariance yields six zero
energy eigenvalues corresponding to translation and rotation in each of the

three Cartesian directions.)

Let i and j be two atoms whose equilibrium positions are Bi and R., and
let gij (’the bond’ - see figure 5.l1a) be the vector from the equilibrium

position of atom i to the equilibrium position of atom j;
gij = Bj - Ei (5.3.1)

Let the atoms suffer small displacements u, and u, (ui, u, << d from

A J ij)
equilibrium. u, may be decomposed (see figure 5.1b) into a component Ui

parallel to gij and a component u perpendicular to gij;

U = 8yedyy 7 dg (5.3.2)

Wi=Y% ~Yn gij (5.3.3)

vhere d,. is the unit vector in the direction of 91

ij j;

dys = dy5/dy5 (5.3.4)

Let kgj be the force constant for the central force between these two
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atoms. The central force on atom i due to atom j has magnitude;

c c
Fij = xij (ujn - uin) (5.3.5)
This force is in the direction gij;

c -

Cc
Foi o= N Cugp-wyp) dg (5.3.6)

- n
Similarly let Xi? be the force constant £for the non-central force between

the two atoms. The non-central force on atom i due to atom j is;
c nc
ggj = Ny Cugp - w0 (5.3.7)

Using (5.3.3);

nc nc p 7
gij = Xij [ (gj - ujII gij) - (gi - Wy gij) ] (5.3.8)

The total force on atom i due to atom j is then;

P.. = FS., + FI¢
=ij T =ij T =ij

C nc
= A (g - uyp dy5 ¢ Ny Dy - uypdss) - (U - uypdig) ]
c nc N nc
= (Xij —Xij) (ujII - uiH) gij + Xij (gj - gi) (5.3.9)

Using (5.3.3) and (5.3.4) this becomes;

F.. = [0S, - A%y/d..2] (uude. - w,.d..) do. + X2C (U, - u,
—lJ [( lJ lJ) lJ ] (EJ —lJ E1 —IJ) glJ + lJ (EJ E1) (5.3.10)

~
By use of equation (A.l1) this may be expressed in a form suitable for

evaluation of the dynamical sub-matrices !ij

.
?

c nc 2 nc

(5.3.11)

The set of forces (5.3.10) is equivalent to a potential given by;
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c nc 2 2 nc 2

wvhere both summations are taken over all the N atoms of the sample. Summing
(5.3.11) over all atoms j and using Newton’s Second Law of Motion gives the

total force on atom i as;

N
m, =F =1 Eij (5.3.13)
j=1
j#i

In principle the summation over j must be taken over all the other N-1
atoms of the sample in order to obtain the force on atom i. However, in any

practical calculation the summation must be restricted, quite possibly to

just nearest neighbours, if it is to be manageable.

Comparing with equation (5.2.3) gives the dynamical sub-matrices for a

system described by Born forces as;

N
2 nc
Voo = (1/m) O[OS, - N15)/d, %) diid.. + Aig I ]
=ii i 321 ij ij7 7ij ij=ij ij = (5.3.14)
j#i
. o= —4(1/m,m, ¢ - A%/d,.%) d,.d.. + NS j #i
¥ij (I/mgmy) [COG5 - Ayy)/ds57) dy5d5 + A5 L1 for jai (5.3.15)

vhere I is the appropriate unit matrix.

From equations (5.3.14) and (5.3.15) it can be seen that the dynamical
sub-matrices depend wupon the atomic coordinates ( through the gij ) and

masses m, and the interatomic forces ( through the ng and Xg; ) as stated

previously.

Chapter 5 Page 5-13



4.3.3 KEATING FORCES.

In 1966 KEATING developed a force model which is rotationally invariant.
This model consists of a central force term together with another term
vhich is often (incorrectly) referred to as a ’bond-bend’ force. The
expressions given by Keating are for the specific case of diamond, which is
tetrahedrally coordinated, but those given here are suitable for any

coordination. The potental energy of a system described by the Keating

force model is;

_ 2 2 .2 38 _

V=) 16d Teg—2 ¢ 55 - gij Y+ ) 53233237 (r...r,. d...d..,)
ij i(3,3") (5.3.17)

where Eij is the vector from atom i to atom j, o« and B are force constants,

the 1 summations are taken over all atoms, the j summation is over all

neighbours of i and the (j,j’) summation is taken over all distinct pairs

of neighbours of i. The total force on atom i may be shown to be;

_ )3 38 [
B = 3,0 Cistiy) G 2 Wy, iRy B GigPagy) Yy
] 337
']
_ _38 [ ]
(D;5/585505) Ei] *_3 Z I (Dypsd5p) Yy + (dy5dsp) By - (dypdsy) b
J
ki (5.3.18)

wvhere the k summation is over neighbours of j other than i (see figure

5.1c) and the vector gijk is defined by;

D;sp = 435 + dyy (5.3.19)

The dynamical sub-matrices appropriate to the Keating force model may be
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shown to be;

1 [ 3a 38 38
W, = = y2%22d,.d.. + ) 5——D D s Y B —d,. d ]
¥ . d..- %435 % Gd, s, ey s miaya 4d, .d,, Sik Sk
ey 5 13 o PRV S AR LS I S I N S i 1S 3%
3753 k#i (5.3.20)
-1 [3a 38 38
v = 2d, d.. + Yor——d.., D..., + Y= D, . d, ]
i3 q(mimj) dij ij —ij j,édijdij’ ijr =i3j’ ; 4dijdjk jki =jk
i’ #j k#i (5.3.21)
-1 38
= d.. d.
Yik T Y(mm) j§ Gdy a3 Sik (5.3.22)

vhere the j summation of (5.3.22) is taken over common neighbours of i and

Despite the apparent simplicity of the Keating potential (5.3.17),
equations (5.3.20), (5.3.21) and (5.3.22) show clearly that a VDOS
calculation based upon Keating forces is very much more complicated than a
calculation based upon Born forces. In 1975 ALBEN, WEAIRE, SMITH and
BRODSKY showed that calculations for amorphous Si and Ge based upon Born
forces yield results which are essentially identical to those obtained
using Keating forces. Similarly LAUGHLIN and JOANNQPOULOS (1978) have shown
that for a cluster-Bethe-lattice calculation for SiO2 the simpler Born
force model is in most respects an execellent approximation for the more
realistic Keating force model. It seems reasonable to assume that this is
also the case with other rotationally invariant force models, such as the
valence force fields which stem from the work of SCHACHTSCHNEIDER and
SNYDER (1963), and so it is concluded that for a VDOS calculation the Born

force model is adequate.
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5.1a

5.1c

Figure 5.1 Definition of Vectors for the Theory of Network Dynamics.



CHAPTER 6

Dy7Ni3 — INTRODUCTION.

6.1 AMORPHQUS METALS - AN INTRODUCTION.

6.1.1 INTRODUCTION.

In 1960 an exciting new form of matter was discovered (KLEMENT, WILLENS
and DUWEZ) during a study of the rapid cooling of a molten alloy of gold
and silicon. Tt was found that if the alloy was cooled sufficiently quickly
the resulting solid did not exhibit any regular crystal structure, and yet
it did have some of the other properties normally associated with metals
such as a high electrical conductivity. Previously it had been thought that
directional covalent bonding was a prerequisite for the avoidance of
crystallisation from the melt, but this discovery showed this not to be the
case. This was the first observation of a metallic glass and subsequent
research has shown there to be a wide variety of such materials: Some
elemental metals, such as Ni, may be produced in amorphous form, although
there is some question as to their purity. Amorphous metallic alloys can
also be made, either from combinations of metallic elements alone or from
combinations of metallic elements and metalloid elements (Si, B, P or C).
Most structural studies have concentrated on binary alloys (ie. two
elements) since these offer greater hope of being understood than
multicomponent systems. Of particular interest for the present work are
rare earth-late transition metal (RE-TL) alloys, such as Gd18C°82 (nb. for
alloys the subscripts refer to atomic percentages and do not have

structural significance). The largest number of structural studies have
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been on transition metal-metalloid (T-M) alloys, such as Ni76P24, with a
smaller number of studies on early transition metal-late transition metal
(TE-TL) alloys, such as Ni6ONb40' Amorphous binary alloys which combine
alkali earth elements with other metallic elements have also been studied

(eg. Mg7OZn3o).

(Note that in the above the division of the periodic table between early

and late transition metals is taken to be between Mn and Fe.)

6.1.2 PROPERTIES.

The properties of a material are highly dependent upon its atomic
structure (e.g. the form of the electron energy bands), and so it is not
surprising that amorphous metals have properties which are significantly
different from their <crystalline counterparts. The electromagnetic
properties, for example, are rather different from those of crystalline
metals, and these have excited considerable interest. Amorphous metals have
somewvhat higher electrical resistivities than crystalline metals, and the
temperature dependence of the resistivity is rather low. Furthermore, the
sign of the temperature coefficient of electrical resistivity can be
changed with the addition of impurities to yield a positive, zero or
negative value close to or below room temperature. Thus one application of
these materials is as standard resistors. Amorphous metals have extremely
high Hall coefficients which is of application in magnetic field sensors.
It is the magnetic properties of amorphous metals that have generated the
greatest volume of research activity. The coercivities of these alloys are

generally very low due to the homogeneity of the material (there are no
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grain boundaries to impede motion of domain walls). The main area of large
scale application in the immediate future seems to be as transformer cores.
Such cores have much lower power losses than conventional crystalline
Fe-Si cores; the higher resistivity reduces heat losses due to eddy
currents, and the low coercivity results in low hysteresis losses. It has
been established that magnetic anisotropy can be present in amorphous
metals (depending on the history of the sample), and also magnetic bubbles
have been observed in some alloys which may prove to be useful for high
density data storage. The soft magnetic properties of amorphous metals have
also been utilised in tape heads and hi-fi pick-ups. Amorphous metals have
superconducting properties which may prove useful, particularly in
superconducting electromagnets. They are hard and strong, and yet ductile
(unlike hard, strong crystals which are generally brittle). Some of them
are highly corrosion resistant, and this property may well be exploited in
protective coatings for products such as machine parts. Unlike crystals,
amorphous metals do not show work-hardening. Some of them behave as
catalysts which are more effective than their crystalline equivalent. On a
more general note, the continuously variable composition of amorphous
metals makes for greater ease of design of materials with desirable
properties. Amorphous metals also have relatively cheap production costs
compared to traditional metals. (The properties described above are
discussed more comprehensively in recent general reviews by CHAUDHARI and
TURNBULL (1978), GRANT and McKIM (1982), GIBBS (1983) and DUGDALE, PAVUNA

and RHODES (1984).)
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6.1.3 ATOMIC STRUCTURE.

To understand the properties of amorphous metals it is necessary to
understand their atomic structure. Diffraction experiments are the most
important structural probe of materials, and any structural model must be
compared with the diffraction data. Density measurements also provide an

important test of structural models.

For many amorphous metals the most prominent peaks in the interference
function occur close to Bragg peaks of the corresponding crystalline phase
and so microcrystalline models for the atomic structure (see section 2.5.1)
have an obvious attraction. These models involve misoriented microcrystals
with diameters averaging 5 to 10 atomic spacings. However, the problem of
how the atoms are arranged in the intercrystalline regions is usually
ignored, and there is considerable difficulty in fitting experimental
scattering data, in particular the relative sharpness of the first peak of
the interference function (CARGILL, 1975). Models involving abrupt
structural discontinuities have generally been found to be unsatisfactory

and will not be dicussed further.

A somewhat more satisfactory approach to modelling atomic arrangements
in amorphous metals is based on structures formed by the random close
packing (RCP) of spheres. The study of RCPs of a single size of hard sphere
vas pioneered by BERNAL (1959, 1964) as an attempt to model simple liquids.
A number of hand-built models were constructed with a single size of
sphere, the largest and most accurate of which was built by FINNEY (1970)

and contained nearly 8000 spheres. The method used to construct thése
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models was to fill a bag with a large number of ball bearings in such a way
that firstly there were no regular crystalline regions (’random’) and
secondly that there were no holes large enough to contain another sphere
(‘close’). The balls were then glued into position and their coordinates
measured (BERNAL, CHERRY, FINNEY and KNIGHT, 1970). More recently RCPs of
single-sized spheres have also been constructed by computer (see CARGILL,
1981, and references contained therein). The topology of a RCP of spheres
can be described in terms of the holes between the spheres. These holes may
be considered to be approximately regular polyhedra (since they are defined
by the contacts between single-sized spheres) and BERNAL (1960) has pointed
out that there are only five polyhedra small enough not to admit another
sphere into their interior. The term ’‘canonical holes’ has been used for
these five polyhedra and they are as follows: the tetrahedron, the
half-octahedron, the tetragonal dodecahedron, the trigonal prism and the
Archimedean anti-prism (see figure 6.1). Alternatively the topology of a
RCP may be described in terms of Wigner-Seitz cells (known as Voronoi

polyhedra in this context).

In 1964 COHEN and TURNBULL suggested a RCP of hard spheres as a
prototype for the structure of monatomic amorphous metals. DAVIES and
GRUNDY (1971, 1972) have performed electron diffraction on nominally pure
films of Ni, Co, Au and Ag. The data were compared in real-space with
FINNEY’'s (1970) RCP of hard spheres model and it was concluded that the
structures of these films are the atomic equivalentof the RCP structure.
However, there is a serious unresolved problem in that the hard sphere
diameter required to fit the RCP distribution function to the experimental

RDFs in the region beyond the first peak was 5% smaller than the average

Chapter 6 Page 6-5



nearest neighbour spacing indicated by the position of the first peak of

the experimental RDFs.

In 1970 CARGILL proposed the use of a single sphere size RCP model to
describe the structure of T-M alloys, with the two types of atom
distributed at random. The argument was based wupon the fact that the
12-coordinated Goldschmidt radii for many of the metal-metalloid pairs are
very similar. It was shown that the total RDF for this model reproduced the
experimental RDF for Ni76P24 derived from X-ray diffraction remarkably
well, including the split second peak which 1is a common characteristic of
most T-M alloys. However, there are several problems with this model, the
most serious of which is that chemical ordering is now known to occur in
T-M alloys (see below) and such a phenomenon is not included in the model.

Also there are problems with the nearest neighbour distance, coordination

number and density.

Chemical ordering was first observed in a T-M alloy by SADOC and DIXMIER
(1976) who measured the partial distribution functions for COBOPZO by a
combined use of neutron diffraction, X-ray diffraction and polarised
neutron diffraction. It was found that there are no metalloid-metalloid
near neighbours in this alloy. The measurement of partial distribution
functions has proved to be of great value in the study of SRO in amorphous
metals since, unlike conventional glasses, there tends to be considerable
overlap of nearest neighbour peaks in real-space. The partial functions can
be separated experimentally by techniques such as isotopic substitution
neutron diffraction (see section 6.4.1), combined use of diffraction with

different types of radiation and isomorphous substitution. Subsequent to
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the work of SADOC and DIXMIER (1976) the partial correlation functions have
been measured for a number of T-M alloys at a range of compositions and it
is found that these alloys exhibit a very strong degree of chemical

ordering with an avoidance of metalloid-metalloid contact (SPAEPEN and

GARGILL, 1985).

A modification of CARGILL’s (1970) single sphere size RCP model for the
structure of T-M alloys was proposed by POLK (1970) in which the metal
atoms are arranged in a RCP structure with the metalloid atoms occupying
the larger holes inherent in the random packing. This modification has the
advantage that chemical ordering is now included in the model, and also the
proportion of metalloid atoms required to stabilise the structure (~20%) is
predicted correctly. However, subsequent calculations (CARGILL, 1975) have
shown that in fact the holes in a RCP are not as large as originally
thought and there is insufficient volume to accept any but the very
smallest type of metalloid atoms. Despite this, the interstitial model for
metalloid positioning still appears attractive and there have been several
attempts at generating binary RCP models with two sizes of atom, and with
no adjacent metalloid atoms (for example see BOUDREAUX and GREGOR, 1977).
There have also been attempts to improve RCP models by relaxing the
structure (see section 2.5.3) using a Lennard-Jones potential to simulate
the predominantly non-directional character of metallic bonding, leading to
a type of model known as a RCP of soft spheres (see for example CARGILL,

1981). However, this approach has not been obviously any more successful

for T-M alloys.

More recently GASKELL (1979) has proposed an alternative approach to the
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modelling of the atomic structure of T-M alloys which is rather different
to that described above. Many crystalline T3M alloys consist of packings of
MT6 trigonal prisms (figure 6.2), and it is suggested that it may be
possible to describe amorphous T4M alloys in terms of trigonal prismatic
structural units. In order to model the structure of amorphous PdASi a
hand-built trigonal prismatic model was constructed. The prisms were
connected together by sharing triangle edges with connected prisms having
opposite orientations (see figure 6.2) as is found in cementite Fe,C (Pd3Si
is isostructural with Fe3C). A trigonal prism was added to the model
(starting with a single seed trigonal prism) by placing a single T atom in
half-octahedral configuration over the square face of a prism. This then
defines the triangular base for the next prism and so on. A random
arrangment was obtained by choosing shared edges essentially at random. The
M atoms were added at the computation stage. Note that as ELLIOTT (1983)
has pointed out one of the major differences of the trigonal prismatic
model compared to the RCP of spheres model is that the RCP has a wide
variety of coordination polyhedra whereas the trigonal prismatic model has
a well-defined structural unit reminiscent of the CRN approach to the
modelling of conventional glasses. GASKELL’s (1979) model was relaxed using
a Lennard-Jones (LJ) potential, although it was found to be necessary to
use a very slightly artificial potential so that the trigonal prismatic
coordination was maintained. The reciprocal-space and real-space total (ie.
not partial) functions for the model were compared with those for Pd4Si and
the agreement obtained was found to be remarkably good for this type of
work. A later comparison (GASKELL, 1981) with approximate experimental
Pd-Pd and Pd-Si pair distribution functions shows reasonably good agreement

at low and medium r, though with some discrepancies at high r. GASKELL
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(1981) has also suggested that whilst the Fe3C type triangle edge sharing
arrangement may be relevant to binary alloys with very different atom
sizes, the Fe3P type triangle edge sharing arrangement (figure 6.2) can be
expected to be more relevant when the atoms are of a similar size. Also
GARDNER and COWLAM (1985) have concluded from a study of the partial
functions of amorphous Ni64B36 that when there is not a crystal phase of
the same stoichiometry as the T-M amorphous phase it may be appropriate to
consider crystal phases of both lower and higher metalloid concentration as
prototype structures. GELLATLY and FINNEY (1982) have performed a radical
plane analysis (a generalisation of Voronoi polyhedra for a multicomponent
system) of the GASKELL (1979) model from which they conclude that after
relaxation very few of the M atoms still have a trigonal prismatic
coordination polyhedron. However, this analysis does not enable a
distinction to be drawn between the T atoms in a trigonal prism and
half-octahedrally positioned T atoms and it is not clear how much
significance can be attached to this result. Possibly the simple LJ
potential is unsuitable for the relaxation of such models. A second
trigonal prismatic modelling study with a rather different approach has
been performed by DUBOIS, GASKELL and LeCAER (1985). These workers observed
that the layered structure of Fe3C (see section 8.4) can be described in
terms of twinning planes. A hypothetical T4M lattice was proposed which is
based upon the Fe3C lattice with the addition of half-octahedrally
positioned metal atoms which are not included 1in any trigonal prisms. A
model for amorphous N180B20 was constructed by hand with several domains
based on this structure and with the twinning planes of each domain in a
different direction. The relative twinning plane directions of the domains

were chosen so that the common boundary involved only limited strain with
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boundary atoms conforming to the constraints imposed by at least one set of
twinning planes. The prisms were connected together either by triangle edge
sharing as in F3C, by the sharing of a single vertex or via a
half-octahedrally positioned metal atom. The model was relaxed with a LJ
potential and the partial correlation functions dll’(r) calculated. A
comparison was performed with the measured partial correlation functions of
Ni81B19 (LAMPARTER, SPERL, STEEB and BLETRY, 1982) and reasonable agreement
vas found. The analysis performed by DUBOIS, GASKELL and LeCAER (1985) is

discussed further in section 8.3.2 .

It is only recently that the structure of metal-metal alloys has
received much attention. The partial functions have now been measured for
several metal-metal alloys, mostly TE-TL alloys, and the degree of chemical
ordering has been found to vary to a much greater extent than for T-M
alloys. Cu57Zr43 (MIZOGUCHI, KUDO, IRISAWA, WATANABE, NIIMURA, MISAVA and
SUZUKI, 1978; LAMPARTER, STEEB and GRALLATH, 1983), Be37.5Ti62.5 (LEE,
ETHERINGTON and WAGNER, 1985) and possibly Ni352r65 (LEE, ETHERINGTON and
WAGNER, 1984; LEE, JOST, WAGNER and TANNER, 1985; MIZOGUCHI, YODA, AKUTSU,
YAMADA, NISHIOKA, SUEMASA and WATANABE, 1985) have been shown to be
disordered chemically whilst Ni40Ti60 (FUKUNAGA, WATANABE and SUZUKI,
1984), Be43Zr57 (MARET, SOPER, ETHERINGTON and WAGNER, 1984), Ni

63.7%T36.3
(LEFEBVRE, QUIVY, BIGOT, CALVAYRAC and BELLISSENT, 1985) and Ni_.Nb

6238
(SVAB, MESZAROS, KONCZ0S, ISHMAEV, ISAKOV, SADIKOV CHERNYSHOV, 1988) have
been shown to be at least partially ordered chemically. Thus far there
appear to have been virtually no attempts to interpret the SRO of

metal-metal alloys beyond a calculation of nearest neighbour distances,

coordination numbers and chemical short range order (CSRO) parameters (see
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section 8.1.3), and a cursory comparison of the values obtained with
related crystals. Hopefully now that the partial functions have been
measured for a number of metal-metal alloys there will be a greater effort

to model their atomic structure.

There have been several structural studies of sputtered TL-rich RE-TL
films: CARGILL (1974, 1975) has performed X-ray diffraction on Gd36Fe64 and
GdlBCOBZ’ RHYNE, PICKART and ALPERIN (1974) have performed neutron
diffraction on TbFe2 and FELDMAN, CARTER, SKELTON and FORESTER (1978) have
performed X-ray diffraction on SmFez. The structures of these alloys appear
to be essentially the same with a RDF whose first maximum consists of three
distinct contributions. These may be interpreted in terms of nearest
neighbour contacts between each of the three possible pairs of atoms and
the positions of the peaks are in good agreement with the Goldschmidt
radii. The identification of the nearest neighbour peaks appears to be
confirmed by the calculations of O’LEARY (1975) who has obtained
approximate partial correlation functions for TbFe2 by combining the
nuclear and magnetic neutron diffraction data for TbFe2 and the X-ray
diffraction data for GdFe2 (ignoring the peak function differences between
these three different types of diffraction). There is thus no evidence for
strong chemical ordering in TL-rich RE-TL alloys. CARGILL (1974, 1975),
0’/LEARY (1975) and FELDMAN, CARTER, SKELTON and FORESTER (1978) have
compared their experimental nearest neighbour distances and coordination
numbers with those for the related cubic Laves phase RE—TL2 crystal. The
nearest neighbour distances were found to be roughly similar whilst the
coordination numbers were found to differ significantly. CARGILL and

KIRKPATRICK (1976) and CARGILL (1981) have compared the diffraction data
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for deCol_x alloys with computer generated sphere packing models. These
were generated for two sizes of sphere with a requirement for tetrahedral
configurations. The relaxed models show qualitative agreement with the
experimental data in both real-space and reciprocal-space. However the

model densities are unrealistically low.

There has been only one structural study of RE-rich RE-TL alloys
reported in the 1literature. MARET, CHIEUX, HICTER, ATZMON and JOHNSON
(1985, 1987) have measured both the Faber-Ziman and Bhatia-Thornton partial
functions (see section 7.3.8) for Y67Ni33 and Y67Cu33. (Strictly yttrium is
not a RE but its chemical properties are very similar to those of RE
elements.) For the Ni alloy three neutron diffraction experiments making
use of the isotopic substitution method were performed and partial
functions of high accuracy were obtained. In the case of the Cu alloy two
isotopic substitution neutron diffraction experiments and one X-ray
diffraction experiment were performed and the partial functions obtained
were much less accurate. The CSRO parameter shows a strong chemical
ordering in Y67Ni33 and a tendency towards random mixing of both
constituents in Y67Cu33. The interpretation of the data for these two
alloys 1is discussed in more detail in Chapter 11 together with the

interpretation of the present work on Dy7Ni3.

6.2 MAGNETIC ORDER IN AMORPHOUS RE-TL ALLOYS.

6.2.1 THE OBSERVATION OF MAGNETIC SRO IN AMORPHOUS RE-TL ALLOYS.

The study of magnetic SRO in amorphous solids by neutron diffraction is
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a much less well developed subject than either the study of atomic SRO in
amorphous solids by diffraction or the study of magnetic order in crystals
by neutron diffraction. The early measurements of magnetic SRO in amorphous
solids by neutron diffraction have been reviewed by WRIGHT (1980).
Virtually all workers in this field have ignored the ya(r) magnetic
anisotropy term in the cross-section and have Fourier transformed the
experimental data according to equation (4.2.24) to obtain a real-space
correlation function. The only exceptions to this are NAGELE, KNORR,
PRANDL, CONVERT and BUEVOZ (1978) and RAINFORD, CORNELIUS, KILCOYNE and
MOHAMMED (1988) who have analysed magnetic neutron diffraction data from
amorphous solids by least squares fitting of equation (4.2.21) with the

magnetic ions divided into shells as for a crystalline powder (BLECH and

AVERBACH, 1964).

There have been very few neutron diffraction studies of magnetic SRO in
amorphous rare earth-transition metal alloys. The first such measurement
vas made by RHYNE, PICKART and ALPERIN (1972; 1973) who isolated the
magnetic structure factor for sputtered TbFe2 in the magnetically ordered
state by performing a difference between the diffraction pattern measured
at high and low temperatures (thus ignoring the change with temperature of
the nuclear scattering - see section 4.1.4). The magnetic structure factor
was Fourier transformed according to equation (4.2.24) and it was shown
that the resultant real-space correlation function could be understood
qualitatively in terms of a ferrimagnetic ordering similar to that in
crystalline TbFez. RAINFORD, CORNELIUS, KILCOYNE and MOHAMMED (1988) have
used the same temperature-difference technique to isolate the magnetic

structure factor in the region of the £first peak (~01) for several

Chapter 6 Page 6-13



melt-spun amorphous alloys. A least squares method was used to fit equation
(4.2.21) to the difference patterns, again ignoring the change in the
nuclear scattering given by the Debye-Waller factor (and also thermal
expansion). For szFe evidence was found for 1long range ferromagnetic
correlations. (Note that the Th-Fe system contains two magnetic species and
so it might be expected to exhibit a more complicated magnetic order than
the Dy-Ni system which contains only one magnetic species - see section
6.2.2 .) For (Tb0.6YO.4)2Ni and (Tbo.eYo.a)zc“ the correlations were found
to extend only to nearest neighbours and to be markedly anisotropic.
BOUCHER, CHIEUX, CONVERT, TOURBOT and TOURNARIE (1985, 1986) have isolated
the magnetic structure factor in the region of 01 for sputtered TbCu3'54 at
a number of temperatures also by using the temperature-difference technique
(and ignoring the change with temperature of the nuclear scattering). The
magnetic structure factors obtained are very similar to that obtained by
RAINFORD, CORNELIUS, KILCOYNE and MOHAMMED (1988) for (Tb0.6Yo_4)2Ni. The
anisotropy term va(r) (equation (4.2.23)) was ignored and the data were
Fourier transformed to yield a real-space magnetic correlation function
wvhich was related to the nuclear Tb-Tb partial correlation function.
However, the interpretation of the results is not clear because of the
nuclear heterogeneity of the sample and also the complicated heterogeneous
magnetic structure which was postulated (’seedy’ magnetic order). (Note
that the Dy-Cu system has a single magnetic species as with the Dy-Ni
system.) BOUCHER, LIENARD, REBOUILLAT and SCHWEIZER (1979a) have performed
a study of the magnetic correlations in sputtered ErCoz. Polarised neutrons
and polarisation analysis were wused to isolate the coherent magnetic
scattering, thus avoiding any potential problem due to the change in the

nuclear scattering with temperature. However, the drawback of this
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technique 1is that the statistical accuracy of the final data is extremely
poor. The data was interpreted in terms of a sperimagnetic structure (see
section 6.2.2) in which the cobalt moments are parallel whilst the erbium
moments are opposed to the cobalt moments but strongly connected to their
local easy magnetisation axes. Evidence was found for a correlation between
the local easy magnetisation axes; depending on the direction of the
anisotropy axes relative to the cobalt moments the ordering between erbium

first neighbour moments may be ferromagnetic, antiferromagnetic or at

random.

6.2.2 RANDOM ANISOTROPY MAGNETISM.

The only previous study of any type of amorphous Dyl_xNiX with the
composition variable x in the region of 0.3 is that of BUSCHOW (1980) in
which the magnetic properties of several amorphous RE69Ni31 (x=0.31) alloys
were studied. Following the work of LIENARD and REBOUILLAT (1978) which
shows that Ni ions in Yl-xNix lose their moments below x=0.83, the magnetic
properties of these alloys can be regarded as resulting almost exclusively
from the magnetic moments on the RE ions. The temperature dependence of the
magnetisation in these alloys was interpreted by BUSCHOW (1980) as being
typical of that observed in ferromagnetic materials. The inverse
susceptibilty showed a 1linear temperature dependence at temperatures in
excess of the ordering temperature, yielding an asymptotic Curie
temperature 9p=35K for Dy69Ni31, with Gd69Ni31 showing the highest
asymptotic temperature. It was found that at 4.2K saturation of the
magnetisation was reached for Gd69Ni31 at a field of about 10kOe, whilst

for the other alloys saturation was not reached at 4.2K in the maximum
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field available. The moment M measured at 4.2K in a field of 18k0Oe was
analysed on the assumption of a collinear arrangement of rare earth ion
moments. It was found that for Gd69Ni31 the moment per RE corresponded to
the free ion value, but for the other alloys the moment per RE was far
below the free ion value. The uniqueness of the behaviour of the Gd alloy
provides the key to determining the type of magnetism operating in these
alloys since of the REs only Gd is an S-state ion : An S-state ion does not
experience anisotropy due to the crystal field of the neighbouring ions
whereas all ions with non-zero orbital angular momentum do experience such
anisotropy. Thus the appropriate model for discussing magnetic ordering in

Dy7Ni3 is that of random anisotropy magnetism (RAM).

The RAM model was introduced (HARRIS, PLISCHKE and ZUCKERMANN, 1973) to
describe the magnetic order behaviour of amorphous alloys containing RE
ions with non-zero orbital angular momentum. This model is defined by a

Hamiltonian which may be generalised to;

2 ‘
H= - iJ}; Ji5 8584 - f D; (n,.S,) (6.2.1)

vhere S, is the total angular momentum at site i. The first term represents
exchange interactions and the exchange interaction parameter Jij may vary
from site to site due to fluctuations in exchange interactions as described
by the RKKY interaction (RUDERMAN and KITTEL, 1954). The second term
represents disorder in the single-ion anisotropy axes: n, is a unit vector
in the random easy-axis direction for site i and Di is the strength of the

anisotropy interaction for the ith site.
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The magnetic structures vwhich can occur in systems described by the
so-called HPZ (HARRIS, PLISCHKE and ZUCKERMANN, 1973) Hamiltonian (6.2.1)
are still the subject of much discussion. There have been several
theoretical studies (AHARONY, 1975; HARRIS, 1980; PELCOVITS, PYTITE and
RUDNICK, 1978, 1982) indicating that ferromagnetism (ie. magnetic LRO) is
impossible for a RAM system in less than four dimensions. CHUDNOVSKY and
SEROTA (1982; 1983) have given a theory for the RAM problem in both the
small and large (Do/Jo) limits (D, and J, being the mean values of Di and

of Jij for nearest neighbours). The magnetic structure is found to depend

on the parameter Ar;
2
Ar = (Do/Jo) (Rc/a) (6.2.2)

where a 1is the atomic spacing and Rc is the spatial correlation of
easy-axes (in the region of 3a to 5a for amorphous solids). In particular
CHUDNOVSKY and SERQOTA (1982; 1983) show that in 3D the spin correlation

length is given by;

E= AR, (6.2.3)

(see also IMRY and MA, 1975 and ALBEN, BECKER and CHI, 1978). Thus the
magnitude of the local anisotropy to exchange ratio (Dy/J,) governs the
magnetic order occurring in a particular RAM system. In such a system the
magnetisation can wander in direction to gain from local variations in the
easy-axis direction and if (Dy/Jy) is large the bulk properties have much
in common with spin glasses (SG). COEY and READMAN (1973) have introduced
the term ’'speromagnet’ (SM) to denote SG-like magnetic structures that
result from single-ion anisotropy to distinguish them from SGs which occur

due to competing exchange interactions. In the case of very small (Dy/J,)
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the magnetic properties may be difficult to distinguish from a multi-domain
ferromagnet. Figure 6.3 shows a phase-diagram given recently by SELLMYER
and NAFIS (1985) for RAM systems. CHUDNOVSKY and SEROTA (1982; 1983) have
predicted a new type of magnetic structure, the correlated speromagnet
(CSM, the nomenclature suggested by SELLMYER and NAFIS (1985) is follpwed
here) which may occur for smaller (Do/J,). A CSM exhibits a smooth rotation
of the magnetisation over a ferromagnetic correlation length and has a net
magnetisation of zero. The CSM is different from a multi-domain ferromagnet
in that the rotation of the magnetisation is smooth with no sharp domain
walls. The term ’asperomagnet’ has been introduced (REBOUILLAT, LIENARD,
COEY, ARRESE-BOGGIANO and CHAPPERT, 1977) to denote a magnetic structure in
wvhich the moments are 1locked in various orientations but with some
orientations more likely than others. (In a speromagnet all orientations
are equally likely.) An asperomagnet has a spontaneous magnetisation and
can be thought of as a random ferromagnet. Also the term ’sperimagnet’ has
been introduced (COEY, CHAPPERT and WANG, 1976) to denote a system with two
magnetic species in which the moments of at least one of the magnetic

species are locked into random orientations.

Small angle neutron scattering (SANS) may be used as a method of
studying magnetic order, providing information which is complementary to
that obtained by conventional ‘wide-angle’ neutron diffraction (see section
6.2.1). Conventional neutron diffraction yields information about magnetic
correlations over distances of the order of the nearest neighbour distance
(~1-104) wvhereas SANS gives informétion about magnetic correlations
extending over larger distances (~10-1000A). The first amorphous RE-TL

alloys to be studied by SANS were TbFe2 and YFe2 (PICKART, RHYNE and
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ALPERIN, 1974). For TbFe2 an intense, strongly temperature-dependent small
angle component was observed, accompanied by a ‘weak divergence’ near the
magnetisation-determined critical temperature Tc. Above Tc the lineshape

was found to be closely Lorentzian;

A

I(Q) = ¥+ K (6.2.4)

wvhere K (a{‘l) is the inverse correlation length and A is a constant. Fits
to the data yielded a correlation length which did not appear to diverge at
Tc (as would be the case for a ferromagnet) but reached a maximum of about
70A. The lineshape for TbFe2 below Tc was not well understood, although an
analysis in terms of an adaptation of Porod’s law (equation (4.3.8))
assuming I(Q)EQ—Z'4 suggested that fluctuations are frozen in at Tc with
the correlation length remaining constant below Tc. In the case of YFe2 the
lineshape was found to be Lorentzian at all temperatures. The correlation
length obtained by £fitting the data did not exceed about 114 at any

temperature and later work (FORESTER, KOON, SCHELLENG and RHYNE, 1979)

suggests that YFe2 behaves as a concentrated SG.

Subsequent SANS studies of amorphous RE-TL alloys have nearly all been
performed with RE—Fe2 alloys and other related alloys. HoFe2 (PICKART,
RHYNE and ALPERIN, 1975), Tb1.8Fe98.2 (PICKART, ALPERIN and RHYNE, 1977)
and NdFe2 (ALPERIN, PICKART and RHYNE, 1978) have all been found to exhibit
anomalous SANS behaviour below Tc similar to that observed in TbFez.
PICKART (1977) has analysed the results of a second SANS experiment on

TbFe2 at very lowv Q using Guinier’s law (equation (4.3.6)). A radius of

gyration for the magnetic clusters of order 800A was derived - a result
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which 1is at variance with the other work on TbFez. GdFe2 (PICKART, RHYNE
and ALPERIN, 1975) has been found to have a broad hump in the SANS at
temperatures in the region of Tc with no anomalous 1low temperature
component. Gd is an S-state ion which is not expected to experience
anisotropy due to the crystal field and GdFe2 appears to be a conventional
ferrimagnet for which the ideas of RAM are not relevant. RHYNE, PICKART and
ALPERIN (1978) have also studied SANS from TmFe2 which they interpret as
being similar to YFez, although there are some differences between the
spectra of the two alloys. A SANS study of ErCo, (BOUCHER, LIENARD,
REBOUILLAT and SCHWEIZER, 1979b) found evidence for two different regimes
in the SANS lineshape with a Q_2 lav at low Q and a 0—3 lav at higher Q.
This was interpreted in terms of the model for the magnetic structure of

ErCo2 (BOUCHER, LIENARD, REBOUILLAT and SCHWEIZER, 1979a) discussed in

section 6.2.1 .

The understanding of the anomalous low temperature SANS component was

advanced in 1984 by RHYNE and GLINKA who showed that the lineshape of TbFe2

below Tc could be represented by the sum of a Lorentzian and a Lorentzian

squared (LLZ);

A . B
+ K2 T (Q + K2)2 (6.2.35)

I(Q) = Qz

where A and B are constants. The use of a LL2 lineshape was stimulated by
the general result that the critical scattering from crystalline systems
with random fields has a LL2 lineshape (see for'example YOSHIZAWA, COWLEY,
SHIRANE, BIRGENAU, GUGGENHEIM and IKEDA, 1982). AHARONY and PYTTE (1983)

have discussed the LL2 scattering curve from a theoretical point of view.
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The Lorentzian squared term in (6.2.5) is due to static cluster scattering
whilst the Lorentzian term can contain contributions from both residual
critical scattering and from finite wavelength spin waves (SPANO and RHYNE,
1985). Subsequently it has been found that the SANS below Tc for Tb75Fe25,
Tb2Fe98 and NdFe2 can also be represented by a LL2 lineshape (SPANO and
RHYNE, 1985; RHYNE, 1985b). The correlation length & obtained from these
measurements is very low at high temperatures, rises to a maximum close to
TC and then at low temperatures falls to a constant value in the region
50-100A. The divergence near Tc becomes stronger as the RE concentration is
increased. BARBARA, DIENY, LIENARD, REBOUILLAT, BOUCHER and SCHWEIZER
(1985) have also attempted to re-analyse the earlier SANS measurements on
ErCo, (BOUCHER, LIENARD, REBOUILLAT and SCHVEIZER, 1979b) in terms of a L1
lineshape. It appears that the correlation length is of order several
hundred Angstroms, but too large in comparison with the experimental data
to be precisely determined. BOUCHER, CHIEUX, CONVERT, TOURBOT and TOURNARIE
(1985, 1986) have performed a SANS study of the magnetic order 1in a
heterogeneous sample of amorphous TbCu3.54. The magnetic order appears to
be determined by the atomic domains in the material and the authors term
this ‘seedy’ magnetic order. There have also been several studies of the
field-dependence of the SANS from RE-TL alloys (BOUCHER, LIENARD,
REBOUILLAT and SCHWEIZER, 1979b; RHYNE and GLINKA, 1984; RHYNE, 1985a,
1985b, 1986). It appears that the field drives the system closer to being a
ferromagnet in which the larger spin clusters join to form a near infinite
percolating cluster. The smaller residual clusters ©produce a
super-paramagnetic like response (BURKE, CYWINSKI and RAINFORD, 1978) from

wvhich may be derived transverse and longitudinal correlation lengths.
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Whilst there has been only one previous study of Dyl_xNix with x=0.3
(BUSCHOW, 1980), there have been several studies of the magnetism occurring
for larger values of x. Dy21Ni79 (x=0.79) has been studied by Méssbauer
spectroscopy and magnetisation measurements (ARRESE-BOGGIANO, CHAPPERT,
COEY, LIENARD and REBOUILLAT, 1976; REBOUILLAT, LIENARD, COEY,
ARRESE-BOGGIANO and CHAPPERT, 1977) from which it was concluded that the
magnetic structure is asperomagnetic. The Ni moment was found to be very
small whilst the Dy moment was found to be close to the free ion value
10.6uB. The Dy-Dy exchange appears to be positive and very much weaker than
the single-ion anisotropy so that the Dy moment directions are strongly
correlated with the direction of the crystal field gradient. A value of 47K

was obtained for Tc'

There have also been a number of studies (DIENY and BARBARA, 1985, 1986;
FILLIPI, DIENY and BARBARA, 1985; BARBARA and DIENY, 1985; BARBARA, COUACH
and DIENY, 1987; SOUSA, MOREIRA, AMARAL, AMADO, BRAGA, BARBARA, DIENY and
FILIPPI, 1987) of alloys in the series DyzGdl_zNi (approximate Ni
concentration) in which the magnetisation, a.c.susceptibility and
resistivity have been measured. The anisotropy in DyNiL32 (x=0.57) was
found to be 1large and a value (D,/J,)=0.9540.30 was determined. A SG
transition was observed in the Dy-rich alloys and the spin freezing
temperature Tf was found to decrease with increasing Dy concentration. For
DyNiL32 Te was about 13.9K. At low termperatures the real component of
susceptibilty was shown to be proportional to (JQ/D°)3'9t0'5, strongly

suggesting that the critical dimensionality of RAM systems is equal to

four.
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Finally it remains to suggest that the ideas of RAM may to some extent
apply to all amorphous magnets, and not just to RE-TL alloys. For example
recent inelastic neutron scattering measurements for Fe83B17 (COWLEY,
CUSSEN and COWLAM, 1988) indicate that the magnetically ordered state for
this alloy is not an 1ideal collinear ferromagnet, but rather that it

involves a distribution of Fe moment directions.

6.3 THE OBJECTIVES OF THIS STUDY.

From the above it is clear that there is a real need to understand the
structure of amorphous metals and that there is still a great deal of
progress to be made. The purpose of this investigation is to perform a
detailed study of one particular amorphous metallic alloy, rather than a
cursory study of the structure of a large number of different alloys as has
been done by other workers in the past. The alloy Dy7Ni3 was chosen for
this study because of its particularly advantageous neutron scattering
properties, as discussed in section 6.4 . Different neutron techniques
yielding information about atomic and magnetic structure at both short and

long range have been used so as to characterise this particular alloy as

completely as possible.

6.4 THE PARTICULAR ADVANTAGES OF Dy7/Ni3 AS A SAMPLE FOR NEUTRON SCATTERING.

6.4.1 SEPARATION OF PARTIAL ATOMIC CORRELATION FUNCTIONS.

As discussed in section 4.1, a neutron diffraction experiment on an

amorphous solid yields a measurement of the atomic structure in the form of
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a correlation function T’(r). T’(r) is the convolution of the true
correlation function T(r) with the peak function P(r) defined by the Qmax
of the experiment (see section 4.1.3). As shown by equation (4.1.26), T’(r)
is a weighted sum of m(m+1)/2 independent partial correlation functions,
where m is the number of elements in the solid;

T'(r) = I ¢ 5151, til,(r) (6.4.1)

11
wvhere the summations 1 and 1’ are both over the elements in the sample. For

the binary alloy Dy7Ni3 equation (6.4.1) becomes;

T'(r) = 0.7 5 (r) + 0.3 5 (r) + 1.4 b_ b

Dy 'DyDy NitNiNi «4 bpoBy; thyns (F) (6.4.2)

wvhere equation (4.1.13) has been used to relate the two (non-independent)

unlike-atom partial correlation functions;

0.7\ .,
tRipy(®) = 3) thyni (F) (6.4.3)

Clearly a measurement of the partial correlation functions will provide
more information on the atomic structure than will a single measurement of
T’(r). Now the coherent neutron scattering length of an element b can be
altered by changing the isotopic composition, and this makes it possible to
determine the partial correlation functions by measuring T'(r) several
times with different values of b and solving the resultant simultaneous
equations. (It is assumed that the effect of the change in isotopic
composition on the atomic structure is negligible. This is a reasonable
assumption since the atomic structure is determined by the electronic
properties of the atoms.) In the case of a binary alloy there are three
partial correlation functions, and T’(r) must be measured for three

different isotopic compositions to determine them. This technique, known as
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the isotopic substitution method, was first employed by ENDERBY, NORTH and
EGELSTAFF (1966) to obtain the three partial structure factors for liquid
Cu6Sn5. Subsequently it has been used by various authors to study a wide
range of amorphous samples. However, the differences in scattering length
are often small, and the scattering lengths themselves are not known very
accurately. Also, the solution of equation (6.4.1) to obtain the partial
correlation functions involves combinations of differences such that errors
can rapidly build up. Thus there are frequently large uncertainties in
published determinations of partial structure factors. Clearly it would be
much better if the individual partial correlation functions could be
obtained by direct measurement, without the need to resort to combinations
of differences. This can be achieved for samples containing certain
elements by use of the double null isotopic substitution technique (WRIGHT,

HANNON, SINCLAIR, JOHNSON and ATZMON, 1984).

Whilst most elements have only isotopes with positive neutron scattering
lengths, there are a few (H,Li,Ti,Cr,Ni,Cd,Sm,Dy and W) which have at least
one stable isotope with a negative scattering length and at least one
stable isotope with a positive scattering length. Thus it is possible to
set b to zero for one of these elements by use of a suitable isotopic
composition. When this is done for one element of a binary system, equation
(6.4.1) shows that a diffraction experiment yields a direct measurement of
the 1like-atom partial correlation function for the other element. This
technique, known as the null technique, has previously been used to study a

number of amorphous systems.

The double null technique involves the study of a binary system for
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vhich both elements can have b set to zero. Both like-atom partial
correlation functions can be obtained by direct measurement, and the
unlike-atom partial correlation function can be obtained by subtracting the

other two from the correlation function obtained for a sample containing

the natural elements.

For this investigation of Dy7Ni3 four samples were made :

. N, Oy On., Ni. 0 .
NDy7NN13 , Dy7 N13 ’ Dy7 N13 and Dy70N13 ,

where the superscript N denotes the natural isotopic composition, and the
superscript 0O denotes an isotopic composition resulting in a coherent
nuclear scattering length (b) of zero. The diffraction experiments

performed on these samples to investigate atomic structure are described in

chapter 7.

As discussed above there are frequently large uncertainties in published
determinations of partial functions. This may be understood by considering

the matrix equation which must be inverted to determine the partial

functions for a binary alloy;

Lpr (r) t,(x)
200 ()| = A [t5,(x) (6.4.4)
370 (1) t1,(x)

where nT'(r) is the correlation function measured in the nth diffraction
experiment and A is a 3x3 matrix vhose components may be calculated from

equation (4.1.26). To determine the partial correlation functions the
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matrix A must be inverted. If the differences in scattering length between
experiments are small then, no matter how accurately the scattering lengths
are known, the equations (6.4.4) will be ill-conditioned. In this case the
fractional errors in the partial functions will be much greater than the
fractional errors in the data for one of the experiments n. However, for
the diffraction experiments on Dy7Ni3 these problems were almost completely
avoided since both of the 1like-atom partial functions were determined
directly without the need for matrix inversion. Hence there was no increase
in fractional error for the 1like-atom functions and only the unlike-atom
functions have a greater fractional error than in the initial measurements.
LIVESEY and GASKELL (1982) have proposed that TURING’s number (1948) T
should be used as a figure of merit for isotopic substitution experiments.
T gives an upper limit on the factor by which the fractional error in the
partial functions exceeds the fractional error in the measurements and

LIVESEY and GASKELL (1982) have shown that it is given approximately by;

T = Al [a7hg (6.4.5)
where the Euclidean norm;

2 .1/2
lalg = C AT (6.4.6)

1]
MARET (1986) has computed the value of T for a number of isotopic
substitution experiments and a value of 5.9 was obtained for the present
experiment. The average of the values reported by MARET (1986) is 79.0 and
the value for the present experiment is the second lowest. Thus the
experiment on Dy7Ni3 is one of the most well-conditioned isotopic
substitution experiments. (Note that the precise value of T depends on the
exact definition of the partial functions and MARET (1986) has used a

different definition to that in this thesis.) However, the value of T is
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not important for the measurement of the like-atom partial functions of
Dy7Ni3 since these are measured directly, and it is only relevant for the

measurement of the unlike-atom partial functions.

6.4.2 SEPARATION OF MAGNETIC SCATTERING.

Tﬁe fourth sample 0Dy70Ni3, which has no coherent nuclear scattering at
all, was used because Dy7Ni3 is a magnetic material and there is a magnetic
contribution to the neutron scattering as well as the nuclear contribution.
Vith this sample it was possible to measure the magnetic component of the
total scattering without the usual interference from the coherent nuclear
scattering. This is useful for comparison with theoretical calculations of
the magnetic form factor (see section 11.2). A good measurement of the
magnetic scattering is also important for the investigation of atomic
structure since the magnetic scattering must be subtracted from the
diffraction data before the correlation functions can be extracted. The
0Dy70Ni3 sample was also used to study .the magnetic ordering occurring at
low temperatures in Dy7N13. This sample is ideally suited for such
measurements since the usual problem of temperature changes in the nuclear
scattering making it difficult to separate the magnetic scattering from the
nuclear scattering is avoided due to the 1lack of coherent nuclear
scattering (see section 9.2 for further discussion of this point). These
experiments are described in chapter 9. The 0Dy70Ni3 and NDy7NNi3 samples
have also been used in a small angle neutron scattering (SANS) study of
long range magnetic correlations at low temperatures and structural
inhomogeneities in Dy7N13. As with the conventional neutron diffraction

experiments the almost unique neutron scattering properties of these
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(a) (b) (c) (c) (c)
Nominal |1 o |atomic |Mass  [C2IChemt (oo g ey "
Isotope Percent Excefg Lengtl_l12 Section Section
/10" amu| /10 "“cm /barns|(14)/barns
8By 0.81 | —64.664 | 14.4 26.1 2.558
03 99.08 | -69.220 | 2.8 0.99 1.613
603 61y 0.05 | -68.950 | 7.6 9.3 1.390
62y 0.07 | -71.660 | -8.7 9.5 8.064
-77.5 0.289 1.204 1.625
8y 0.38 | -64.664 | 14.4 26.1 2.558
60y; 0.52 | -69.220 | 2.8 0.99 1.613
62, 61y 0.13 | -68.950 7.6 9.3 1.390
62y 98.70 | -71.660 | -8.7 9.5 8.064
64y; 0.27 | -72.04 | -0.38 0.018 0.845
-93.1 -0.851 9.493 7.981
1605, 0.11 | -74.77 6.7 5.6 31.142
16ly, 3.10 | -73.03 10.3 16.6 316.984
162y, 1625, 92.39 | -73.16 | -1.4 0.25 107.886
1635, 3.33 | -71.23 5.0 3.3 72.295
164y, 1.07 | -70.80 | 49.4 307 1473.699
-51.6 ~0.0272 | 4.147 | 128.119
Table 6.1

NB Isotopes not shown were present in insignificant concentrations.

Sources of Numerical Data.

(a) ORNL Isotopic Analysis

(b) GOLDMAN, 1972.
(c) SEARS,
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samples are advantageous in discriminating between nuclear and magnetic

scattering.

6.5 SAMPLE PREPARATION.

Zero coherent nuclear scattering length dysprosium (oDy) and nickel
(ONi) were obtained in the form of the metal from 0ak Ridge National
Laboratory (ORNL), USA. The oDy was manufactured by mixing 0.0755g of
natural dysprosium (NDy) with 4.6945g of nominal 162Dy, and the ONi vas

60 62

manufactured by mixing 0.569g of nominal ~Ni with 0.201g of nominal ““Ni.

The complete isotopic analysis of the nominal isotopes provided by ORNL is
shown in table 6.1, together with the neutron scattering properties of the
individual isotopes. Table 6.2 shows the figures used in the calculation of

the neutron scattering properties of the elements used in the samples;

B e T el T
engt}_x12 Section Section

/8 /amu| /10" “cm /barns | (14)/barns
Nyi - - 58.71 1.03 18.5 2.497
Npy - - 162.50 1.69 90.4 517.185
60ys 0.569 | 59.9225| 0.289 1.204 1.625
Oni 62y 0.201 61.9069| -0.851 9.493 7.981
0.770 | 60.4405| -0.0087 3.368 3.284
16z, 4.6945 | 161.9484| -0.0272 4.147 | 128.119
Opy Npy 0.0755 | 162.50 | 1.69 90.4 517.185
4.770 | 161.9571| 0.000018| 5.513 | 134.279

Table 6.2
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Within the accuracy of a neutron scattering experiment (0.1% at best) the
deviations from zero of the calculated coherent nuclear scattering lengths

of the 0Dy and ONi used in these experiments are not significant.

Only very small quantities (2.5g23.0g) of each isotopically substituted
sample were made owing to the great expense of the isotopically substituted
material. The scattering of neutrons from such small samples is low, but
this has the advantage that corrections to the data for absorption,

self-shielding and multiple scattering are relatively small.

The weights of dysprosium and nickel in each sample were such that x in
Dyl_xNix wvas almost exactly 0.3 . In fact the precise value of x varied
between 0.30068 and 0.30080. The value x=0.3 was chosen because the phase
diagram of the Dy-Ni system (figure 6.4) has a deep eutectic at about this
composition, and it is generally found that the glass-forming region for an
amorphous metallic alloy is ced around a deep eutectic (see section

2.4). The precise value of x for this deep eutectic of the Dy-Ni system is

x=0.31 (ZHENG and WANG,1982).

The samples were manufactured at Caltech, USA by M.Atzmon and
VW.L.Johnson, using a melt-spinner. All the samples were manufactured in as
identical a manner as possible, so as to minimise differences in structure
due to variations in preparation conditions. Prior to spinning the samples
vere melted several times in a levitation furnace to ensure homogeneity.
Each isotopically substituted sample was spun in two batches. The ribbons

were spun into an inert gas atmosphere so as to avoid oxidation. This gives
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a faster quench rate than spinning into vacuum. After manufacture the
samples were sealed in glass ampoules with helium, and subsequent to the
first neutron scattering experiments they were kept in an evacuated
desiccator. This was to keep contact vith air to a minimum to avoid any

possibility of the surface of the samples becoming oxidised.

A dial thickness measuring gauge was used to measure the thickness of
the ribbons. The thickness was found to be of order 20um, but there was
quite a large variation (~+6um). This value agrees with that obtained from
measuring the transmission of neutrons on the D17 instrument at ILL (see
Chapter 10). The average width of the ribbons 0Dy70Ni3 was 1.5mm. The
average width of all the other ribbons was 0.9mm. The density of the

3

ribbons was determined to be 8.59gcm_3¢1.5% (8.59gem™ ~ = 0.03938 atoms A-B)

by Archimedes’ method using toluene (ATZMON, 1986).
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CHAPTER 7

DIFFRACTION STUDIES OF THE ATOMIC STRUCTURE OF Dy7/Ni3.

7.1 NEUTRON DIFFRACTOMETERS.

The atomic structure of Dy7Ni3 was studied wusing the neutron
diffractometers D4 and D2 at the Institut Laue Langevin (ILL) Grenoble. The
main reason for the use of two spectrometers was one of scheduling of

experiments, the D2 experiment being performed first.

7.1.1 THE TWIN-AXIS LIQUIDS DIFFRACTOMETER D4.

The twin-axis neutron diffractometer D4 (I.L.L., 1983), illustrated in
figure 7.1 , 1is designed for structural investigations of disordered
matérials. It provides a very wide range of momentum transfer (0.2<Q<221§_1
with X=0.5A) so as to give high real space resolution, and has a high flux
at the sample position so that a high count rate and hence high statistical

accuracy is obtained.

The incident neutrons for D4 are obtained from the H8 beam hole on the
reactor at ILL. This beam hole views the hot source (10dm3 of graphite at
2000K) so that a high flux at 1low wavelengths is obtained. Thus a 1low
wavelength can be used for the experiment, which results in a high Qmax and
hence high real space resolution. A silicon filter removes fast neutrons

from the incident beam. This is followed by two diaphragms which define the

beam before entering the monochromator drum.
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The instrument offers a choice of two 20cmX18cm copper monochromating
crystals, and these are contained within a lead drum. One is cut to reflect
from the [200] planes, and the other 1is cut to reflect from the [220]
planes. The wavelength is continuously variable, but the instrument is only
equipped with second order decontamination filters for 0.5A (obtained from
the [200] crystal) and 0.7A (the [220] crystal), and so in practice one of
these two wavelengths is generally used. These filters are placed at the
entrance to the sample chamber. Between the monochromator and the A2
filter are a beam monitor and a set of slits. The purpose of the monitor is
to take into account fluctuations in beam intensity. The slits are used to

further define the beam.

The sample is enclosed in a fixed vacuum vessel. This is a stainless
steel drum with a thin aluminium window where the neutron beam enters. At
the height of the detectors there is a thin aluminium strip which extends
over the angular range covered by the detectors. Inside the sample chamber,
above and below the strip, there are boron carbide slats which define the
vertical range of the detectors and prevent scattering from the sample
chamber. The sample itself is mounted on a height adjustable platform and
two boron carbide flags fixed to this platform define the beam height at
the sample. At a wavelength of 0.7A the flux at the sample is about 4x107

neutrons cm 2s”). The maximum beam size at the sample is 7cm by 2cm.

The instrument has two identical 64 wire 3He multidetectors with a gas
pressure of 15 bars and a detection area of about l6cm by 7cm. The
detectors can be set at any chosen distance from the sample, but they are

constructed so as to give 0.1° angular steps between wires with a
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sample-detector distance of 1.5m. An evacuated beam tube is placed between
each detector and the sample tank and the detectors are shielded against
external background. The whole instrument is situated on a polished marble
floor and the detectors rest on pads through which compressed air is.

directed to move them.

7.1.2 THE TWIN-AXIS POWDER DIFFRACTOMETER D2.

D2 (I.L.L., 1983) is a high flux twin-axis diffractometer (figure 7.2)
situated on the H11l thermal neutron beam tube at the high flux reactor at
the ILL. The monochromation arrangement 1is set up to provide three
alternative wavelengths: The [311] reflection from a germanium crystal is
used to provide 1.22A at which wavelength the maximum flux is obtained. A
wavelength of 0.9A can be obtained from a [111] germanium reflection. This
wavelength 1is generally used for amorphous materials as it gives the best
real space resolution. The [111] reflection from a copper crystal is used

to provide a wavelength of 2.5A and this wavelength gives the best Q

resolution.

A number of different items of ancillary sample environment equipment
are available incuding a special cryostat with a vanadium tail and cadmium
shielding which can achieve temperatures in the range 1.6K to 300K. The

1

flux at the sample is about 7x10” neutrons cm ?s” ! at a vavelength of

1.22A. The maximum beam size at the sample is S5cm by 1.8cm.

The detector on D2 is a 64 wire multidetector containing 3He at a

pressure of 10 bars. The wires are separated by 2.54mm and the detector is
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72.5cm  from the centre of the sample. Thus the angle between wires is 0.2°
and the detector covers an angular range of 12.8°. Scattering can be

measured at angles from 2° to 130°. The useful detector height is 8ecm.

7.2 EXPERIMENTAL PROCEDURE.

7.2.1 THE PERFORMANCE OF A NEUTRON DIFFRACTION EXPERIMENT ON AN AMORPHOUS

MATERIAL USING A REACTOR SOURCE.

As shown in section 4.1.1 the ultimate purpose of a neutron diffraction
experiment on an amorphous material is to determine the real space
correlation function D(r) or T(r) (these two functions only differ by the
average density term T°(r)). In order to achieve this the distinct
diffraction cross-section i(Q,) is the quantity which must be measured. As
shown in section 4.1.3 i(Q,) must be measured to as high a maximum elastic
momentum transfer Qmax as possible. This is achieved by using incident
neutrons of relatively high energy and making measurements to as high a
scattering angle 26 as possible. The experiment should also be designed to
minimise the experimental corrections which must be applied to the data. To
minimise the extent of the Placzek inelasticity correction discussed in
section 4.1.2 incident neutrons of high energy should be used and
measurements should be made at 1low angles. The absorption correction and

the multiple scattering correction can also be minimised by careful design

of the geometry of the sample to avoid them becoming excessive.

In order to position the sample the centre of the incident neutron beam

must first be 1located. This is achieved by use of a specially adapted
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polaroid camera together with a cadmium marker (cadmium has a very high
thermal neutron absorption cross-section and hence appears black on the
photograph). The incident neutron wavelength A and also the absolute zero
of scattering angle, 26,, for the spectrometer are calibrated by use of a
polycrystalline sample. A crystal whose lattice spacing is precisely known
and which has well separated Bragg peaks at suitable d-spacings should be
used. Nickel powder is generally found to be ideal. As well as measuring
the scattering from the sample, measurements should also be made without
the sample (but with empty sample-can if used). This enables the background
contriﬁution to the scattering to be determined so that it can be
subtracted from the signal measured with the sample in place. A run should
also be performed with a perfect absorber with the same geometry as the
sample so that components in the background which are sample-dependent can
be taken into account. Cadmium is usually used for this purpose. In order
to normalise the data a run should also be performed on a sample which only
scatters incoherently. Vanadium is generally used for this purpose since
natural vanadium has a coherent scattering cross-section of 0.0184 barns
and an incoherent scattering cross-section of 5.187 barns. To a good
approximation the scattering from vanadium is totally featureless and so it
is an ideal material for normalising the data to remove the effects of
detector efficiency and effective solid angle. Also, since the vanadium
cross-sections and average atomic kinetic energy are well-known, the
scattering from a vanadium sample can be calculated according to equation
(4.1.50) and hence the vanadium run can be used to achieve an absolute

normalisation of the sample run,

A very low efficiency detector is used in the incident beam as a monitor
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so that the data may be normalised to the total neutron £flux incident on
the sample. The time spent counting on a sample should be determined
according to the required statistical accuracy, the estimated error on a

point of N counts being Nl/z.

The time spent on the background run should
be such that the errors on the normalised background and sample runs are

equal since this optimises the statistical accuracy of the

background-subtracted data.

Once an absolute normalisation of the data has been achieved,
corrections should be made for absorption, self-shielding and multiple
scattering to yield a corrected diffraction pattern I(Q). The real-space
correlation function may then be obtained from I(Q) by following the steps

illustrated in figure 7.3 . The theory behind this process is presented in

section 4.1 .

In the experiments described in this Chapter a cadmium run was not
performed. This is because previous experience with the diffractometers D4
and D2 has shown that a cadmium correction cannot be satisfactorily
performed (WRIGHT, 1987). The instruments are situated relatively close to
the reactor and this problem is probably due to fast neutrons to which
cadmium is almost transparent. However, with the geometry of these
instruments the magnitude of the sample-dependent background components can
be expected to be very small with the result that the lack of a cadmium
correction is not a severe problem. There is also a problem with the

vanadium runs on these instruments and this is discussed in section 7.3.1
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7.2.2 MOUNTING OF SAMPLES.

The ribbons of amorphous Dy7Ni3 were cut into pieces of length 10-1licm
wvhich were then sanded to remove any small crystallites which might have
formed on the surface. Scotch 3M tape was used to bind the ends of the
pieces of ribbon to form approximately cylindrical samples of estimated
diameter 7mm and the samples were mounted on the spectrometer in a
cadmium-shielded aluminium G-clamp. Table 7.1 gives the number of pieces of
ribbon in each sample and also the effective density p’ calculated on the

assumption of a 7mm diameter cylinder;

N. N.. N_ O,.. O, N_. On.. O
Dy7 N13 Dy7 N13 Dy7 N13 Dy7 N13
Number of Ribbons 90 25 43 38
p’/10_3 atoms A_3 1.6577 0.79201 0.46047 1.1665
Table 7.1

7.2.3 D4 EXPERIMENT.

Initially D4 was used with a nominal incident neutron wavelength of 0.5A
( Qmax~22A—1 ) and a sample-detector distance of 1.5m . A detector
efficiency file was created by running with a large vanadium rod and
counting with each wire at the same angle in turn. This file was used to
correct the raw data so that the purpose of the later vanadium runs was
only to perform an absolute normalisation and to correct for any
geometrical variation in effective counting efficiency. Nickel powder was
run in a 7mm diameter nickel can to calibrate the instrument. The

calibration was performed with the low angle detector only since the angle
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encoders for the two detectors were set to be consistent with each other.
Scans were performed through the [111], [200] and [220] reflections. A
quadratic function was fitted to the background for each peak and this fit
was subtracted from the data. The peak positions were then taken to be at
the centre of gravity of the result, rather than at the centre of a fitted
Gaussian since the resolution function of D4 is not symmetrical. The angles
of the three peaks together with their widths were used as input to a least

squares fitting program to yield the results shown in table 7.2;

Diffractometer NA 26,
0.49748 -0.12112
D4
0.70311 -0.08877
D2 0.92438 0.0

Table 7.2

The calibration was based on a lattice parameter for Ni at 20°C of

a,=3.52387+0.00008A (JETTE and FOOTE, 1935).

A run to measure the diffraction pattern of a sample was performed as
follows: The detectors were placed at the desired angles and neutrons were
counted for a preset number of monitor counts. The low angle detector was
moved by 1.5° between such scans so that each angle was covered by four or
five detector wires whilst the high angle detector was moved by 1.0°
betveen scans so that each angle was covered by up to six or seven wires
since some of the wires in this detector did not work. Three extra scans
wvere performed at the angular limits so that a reasonably uniform coverage

was achieved. About five runs were performed on each sample, where one run

Chapter 7 Page 7-8



consists of a set of scans covering the whole angular range of the
instrument. The angular range covered by each detector is given in table

7.3 together with the detector constant y (see equation (4.1.55));

D4 low angle detector | D4 high angle detector D2
20 1.5° - 88.6° 68.1° » 128.3° 3.4° 5 124.0°
v/t 21.5384 17.9199 6.276
Table 7.3

Runs were performed on the NDy7NNi3 sample and on the background and the
data obtained are shown in figure 7.4 . There did not appear to be any
structure beyond about 12‘&_1 and so it was decided to change the neutron
wavelength to 0.7 ( QmaX~-15A—1 ) to take advantage of the increased
incident flux at higher neutron energy. Nickel scans were performed at the
nev wavelength, yielding the calibration values shown in table 7.2 . Runs

were performed on the NDy7NNi3, NDy70

Ni3 and 0Dy7NNi3 samples (figures 7.4
to 7.6) and also on a 0.477cm diameter vanadium rod and on the background.
The experimental time allocated was not sufficient to allow a measurement
of the diffraction pattern of the 0Dy7ONi3 sample. In retrospect the
decision to change wavelength was a mistake because the difference in count
rates was not that great, and a neutron wavelength of 0.5A would have given
greater real space resolution. Also the change in wavelength meant that the

NDy7 Ni3 sample had to be run twice and there was not time to run the

0Dy70Ni3 sample which, when run on D2, gave a signal at higher Q than had
been expected. The Q-ranges covered in the experiments described above, as

calculated from the calibration values in table 7.2, are given in table

7.4;

Chapter 7 Page 7-9



Diffractometer A Experimental Q—range/A_l Q-range Used/A™1
0.49748 0.36 > 22.70 0.48 -~» 22.70
D4
0.70311 0.26 > 16.08 0.48 - 15.60
D2 0.92438 0.48 -»> 11.90 0.48 -»> 11.90
Table 7.4

7.2.4 D2 EXPERIMENT.

The experiment on D2 was performed with an incident neutron wavelength
of 0.9309A according to the calibration performed by ILL staff and the
detector angle encoder was set so that the values were absolute with regard
to the straight-through beam. However, a subsequent comparison with the
data obtained from D4 showed a slight inconsistency between the Q-scales of
the two instruments which appeared to be due to a small wavelength error.

Hence a 0.7% correction was made yielding an incident neutron wavelength of

0.92438A for D2.

A detector efficency file was created using a vanadium sample in a
similar way to that wused on D4. Runs were performed on all four Dy7Ni3
samples (figures 7.4 to 7.7) as well as a background (empty G-clamp) run
and a vanadium run. The runs on D2 were performed in a similar manner to
those on D4. Single background runs were performed between samples to check
for any variation in the background but none was found. Runs were also
performed on the 0Dy70Ni3 sample in a cryostat to study the magnetic SRO at

low temperatures and these are discussed in Chapter 9.
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7.3 DATA ANALYSIS.

7.3.1 DATA REDUCTION AND CORRECTION.

All the runs on a particular sample were added together and normalised
to the monitor counts. In the case of one D4 run a slight correction was
required due to an intermittently noisy wire. The relevant background data
were then subtracted from the data for each sample. For D4 the data from
the high angle detector were joined to the data from the low angle
detector. This was achieved by multiplying the high angle detector data by
a scaling factor given by the average value of the ratio of the data from
the two detectors in the overlap region. There is a potential problem with
joining the data from the two D4 detectors in that they are filled to
different 3He gas pressures and thus have different detector constants (see
table 7.3). Hence the form of the self scattering is different for the two
detectors (see equation (4.1.50)) and ideally the data for each detector
should be analysed separately until the self scattering has been
subtracted. However, in the case of Dy7Ni3 the atomic masses ( mDy~163amu
and mNi~59amu ) are sufficiently high that this problem can be ignored : A
calculation showed that the maximum difference in the magnitude of the
Placzek correction (equation (4.1.50)) for the two detectors is less than
0.1%. Hence the error involved in joining the data from the two detectors

before subtraction of the self scattering is not significant.

The vanadium data from both instruments were found to slope downwards
from low angle to high angle by about 9% whereas equation (4.1.50) predicts

a slope of about 5% using the quoted detector efficiencies. One possible
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explanation for an excessively high vanadium slope is that the vanadium rod
could be impure with a small hydrogen content. The high incoherent
cross-section and light mass of hydrogen wouid then have the effect of
adding a significant and highly sloping contribution to the self
scattering. However, the same vanadium rod as used in this experiment has
been run satisfactorily on many other instruments (WRIGHT, 1987) and hence
the anomalous vanadium slope on D2 and D4 must be attributed to the
instruments. A slope of 9% cannot be explained by an error in detector
efficiency since even an infinite detector constant y does not result in
such a large slope. In fact the cause of the anomalously high vanadium
slope on these instruments is not known at present. It would seem that
there may be a variation with 26 of the solid angle subtended at the sample
by the detector. However, as is discussed below the effect appears to be
sample-dependent, and so the correct explanation is probably more
complicated and involves some undesirable component of the scattered beam
such as multiply scattered neutrons. One aspect which these instruments
share and is not commonly found elsewhere is the 64-wire multidetector,
although it is not clear how this might lead to the observed effect. It is
suggested that the addition of a soller collimator in front of the detector
to prevent neutrons not travelling in the scattering plane from being
detected might improve the situation. The effect of normalising a sample
run with a vanadium run of incorrect slope is to produce a large anomalous
peak below about 1A in the real space correlation function T’(r) (ie. after
Fourier transformation). Such a peak is very obvious since, apart from
termination ripples and statistical fluctuations which are very much
smaller, T’(r) should be zero in this region. CLARE (1986) has performed a

detailed investigation of this vanadium normalisation problem using D4 data
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taken at the same time as the Dy.,Ni3 data : The gradient of the vanadium
data was adjusted to minimise the size of the low-r normalisation error
peak. (This method is based on the zero-ripple technique of LORCH (1969).)
It was found that the excess fall-off observed in the vanadium data did not
occur at all in the sample data. Hence the sample data was finally
normalised by integration methods without any use of the vanadium data. A
similar analysis was attempted for the Dy7Ni3 data but this did not prove
to be feasible because of the additional complication of magnetic
scattering. The finding of CLARE (1986) was followed and the measured
vanadium data was not used to normalise the data for Dy7Ni3. Instead an
absolute normalisation was achieved by using the calculated self scattering
to scale the data (see section 7.3.4). The final raw data points (after the

corrections described in section 7.3.3) are shown in figures 7.4 to 7.7 .

7.3.2 SMOOTHING OF THE DATA.

The next stage of the analysis was to smooth the background-subtracted
data and to use the resultant fit to interpolate from data with a constant
angle interval to points equally spaced in Q. The purpose of this is to
provide data which is suitable for direct numerical Fourier transformation
and also to reduce the effect of statistical errors. A least-squares cubic
spline program (DIXON, WRIGHT and HUTCHINSON, 1977) was used to perform the
smoothing of the data. At high Q where points are most dense and the
features in I(Q) are smallest the spline tended to follow the noise. Thus
it was found to be necessary to add points in threes before splining to
obtain a good fit at high Q, the purpose of the procedure being to obtain

the line of best fit to the raw data points. The two splines were joined at
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a suitable point where they were identical over an extended range. Even
after this procedure it was necessary to slightly correct some of the fits
in the region close to OmaX by hand. There appeared to be a systematic
error at the very high Q end of the 0.7A D4 data for all three samples
measured (using the 0.5A data as a guide) and hence the last 0.484°1 of

these spectra was discarded. Figures 7.4 to 7.7 show the final fits to the

data.

An additional complication encountered whilst smoothing the data was
that the diffraction patterns of the NDy7NNi3 and NDy70Ni3 samples had a
number of relatively small Bragg peaks. These Bragg peaks are easily
differentiated from the amorphous diffraction pattern since they are much
sharper. They are due to a small concentration of phase-separated
crystallites being present in the samples. Clearly Bragg peaks are
undesirable since it is the amorphous phase that is of interest and they
were removed from the diffraction patterns by drawing a smooth
extrapolation of the amorphous diffraction pattern underneath them (as
shown in figures 7.4 and 7.5). An attempt was made to index the Bragg peaks
obtained, but without much success. There were indications that possibly
more than one crystal phase was present, and of the ten crystalline
compounds formed between dysprosium and nickel (figure 6.4; ZHENG and WANG,
1982) the crystal structures of only five have been reported in the

literature. Figures 7.4 and 7.5 show the subtracted Bragg peaks.
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7.3.3 ABSORPTION, SELF-SHIELDING AND MULTIPLE SCATTERING CORRECTIONS.

The data from a diffraction experiment should be corrected for
absorption, self-shielding and multiple scattering. Absorption is the
reduction in flux due to the capture of neutrons by nuclei of the sample,
self-shielding 1is the reduction of the primary beam by scattering as it
passes through the sample, and multiple scattering is where a neutron
suffers more than one scattering event. In principal these three effects
cannot be separated and a full treatment of the problem requires a Monte
Carlo calculation wvhich must be repeated for every sample. However, as
discussed by WRIGHT (1974), in most cases the linear absorption

coefficients are such that it is a good approximation to separate the

corrections.

ROUSE, COOPER, YORK and CHAKERA (1970) have used numerical integration
to evaluate an approximate formula for the absorption of singly scattered

neutrons within a cylindrical sample of radius R;

(I/1,) - exp[-(1.7133-0.0368sin’0)uR + (0.092740.0375sin0) (u*R)?]

(7.3.1)

wvhere Im is the measured cross-section, It is the true cross-section (ie.

that which would be measured if the absorption cross sections aﬁ of all the

elements were zero) and uA is the linear absorption coefficient;

WAooz A (7.3.2)
111

This formula was applied to the Dy7Ni3 data on the assumption that it is a

good approximation to correct the multiply scattered signal with the
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correction factor for single scattering. The samples were treated as 7mm
diameter cylinders with the effective densities p’ given in table 7.1 .
JOHNSON, WRIGHT and SINCLAIR (1983) have given a procedure by which in the
small linear attenuation coefficient 1limit equation (7.3.1) may also be
used to correct the data for self-shielding and multiple scattering. This
procedure is based on the finding of ENDERBY (1968) that provided multiple
scattering is small (<10%) the resultant intensity is isotropic. The
cross-sections used to calculate the corrections are given in table 6.2 .
Magnetic scattering was not included in the corrections since the analytic
approach described above cannot be used for magnetic scattering due to the

Q-dependence of the magnetic form factor £(Q).

7.3.4 SEPARATION OF SELF SCATTERING AND ABSOLUTE NORMALISATION.

The self scattering for each sample on each of the diffractometers was
calculated using equation (4.1.50). In the case of D4 the detector constant
v used in the calculations was chosen to correspond to the mean efficiency
f(k) of the two detectors. The reduced atomic masses (equation (4.1.51))
were calculated using the atomic masses in table 6.2 and the neutron mass
in table 3.1 . The scattering cross-sections used in the calculations are
given in table 6.2 and the average kinetic energy was estimated to be 25meV
for both elements. The absolute normalisation was then achieved by scaling
the measured diffraction patterns so that they oscillated about the
calculated self scattering at high Q where the magnetic scattering IM(Q) is
essentially zero. The self scattering was then subtracted from the
diffraction patterns yielding i(Q)+IM(Q). Figures 7.4 to 7.6 show the

calculated self scattering and the normalised experimental data.
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7.3.5 SEPARATION OF MAGNETIC SCATTERING.

When a diffraction experiment is performed on an amorphous solid
containing magnetic ions it is necessary to remove the magnetic scattering
IM(Q) in order to obtain the distinct scattering i(Q) which (as shown in
section 4.1) contains the structural information. Generally IM(Q) is
assumed to be totally incoherent (ie. the sample is assumed to be an ideal
paramagnet - see equation 4.2.16) and calculated wusing values from
tabulated calculations of form factors (LISHER and FORSYTH, 1971; see CLARE
(1986) for an example of this approach). Alternatively an estimate of IM(Q)
is made by using an ad hoc smooth curve which when subtracted from I(Q)
results in a 1i(Q) of reaonable appearahce (see for example WILDERMUTH,
LAMPARTER and STEEB, 1985). This approach is not to be recommended for
obvious reasons. For the experiments described in this Chapter a more
accurate subtraction of the magnetic contribution to the scattering was
achieved. This is because the diffraction pattern for the 0Dy7ONi3 sample
provides a direct measurement of IM(Q), since it has no coherent nuclear
scattering. In this way an IM(Q) curve determined under the same
experimental conditions as the other spectra was subtracted. Hence any
problems due to errors in tabulated form factors or due to the
inapplicability of such form factors are avoided. Unfortunately the
ODy70Ni3 diffraction pattern was measured on D2, and not on D4 which has
the higher Qmax' Hence the D2 measurement of IM(Q) was extended to cover
the Q-range of D4. This was achieved by joining the high Q part of the
On., N

Dy7 Ni3 diffraction pattern measured on D4 to the ODy7ONi3 diffraction

pattern measured on D2 (figure 7.7). The justification for this procedure
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is that the structure in the ODy7NNi3 diffraction pattern had essentially
diminished to zero by the Qmax of D2. It must be emphasised that the error
due to using this slightly incorrect IM(Q) with the D4 data is actually
very small indeed since magnetic form factors have fallen virtually to zero
by the Qmax of D2 (~12A—1). This measurement of IM(Q) is discussed further
in section 9.2 . A consequence of the use of the D2 measurement of IM(Q) in
the analysis of the D4 data was that the D4 data below the Qmin of D2 could
not be used. The final i(Q) distinct scattering curves for D4 (after the

back-transform correction discussed in section 6.3.7) are shown in figure

7.8 .

7.3.6 DETERMINATIQON OF THE UNLIKE-ATOM DISTINCT SCATTERING.

Applying equation (4.1.24) to the present experiment yields the distinct

scattering for the three coherently scattering samples as;

2 ®
iON(Q) = 0.7 EDy g dDyDy(r) (sin(Qr)/Q) dr 7.3.3)
2 ©
i, (Q) =0.3b.. [ d....(r) (sin(Qr)/Q) dr
NO Ni 0 NiNi (7.3.4)
(@ = 1g(Q) + dg(Q) + 1.4 By By g dpyn(F) (sin(Qr)/Q) dr 3.5

vhere 1N0(0), 10N(Q) and 1NN(Q) are the distinct scattering from the
N 0, . 0 N... N N,.. . s s .

Dy7 N13, Dy7 N13 and Dy7 N13 samples respectively. The matrix inversion
equation for the general isotopic substitution experiment (see section

5.4.1) then effectively reduces to equations (7.3.3), (7.3.4) and;
iUN(Q) = iNN(Q) - iNO(Q) - iON(Q) (7-3.6)
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wvhere iUN(Q) is the contribution to the distinct scattering from the
NDy7NNi3 sample due to correlations between unlike atoms (Dy-Ni). Note that
the notation used here differs from the conventional Sll’(Q) definitions of
the partial structure factors (equation (4.1.44)). This is to emphasise the
fact that the double null isotopic substitution technique yields all but
one of the partial functions directly with a consequent improvement in

accuracy ie., all but one of the functions compared with modelling

calculations in Chapter 8 are measured directly without the need for matrix

inversion.

Smooth fits for iUN(Q) were obtained by combining the fits to iNO(Q),
iON(O) and iNN(Q) according to equation (7.3.6). The resultant fits were
then compared with the corrected data to check the quality of the fit. The
D2 fit was found to agree very well with the unfitted data points. In the
case of the D4 data it was necessary to use the function iUN(Q)—IM(Q) for
the comparison. This is because the points of the unfitted data for IM(O)
had a different set of Q-values to the unfitted D4 data and so the magnetic
scattering could not be subtracted from the unfitted D4 data. The D4 fit
for iUN(O) wvas not quite perfect in a few small regions and it was
corrected accordingly. These slight inadequacies of the initial fit are due
to the magnification of errors involved in the matrix inversion (see

section 5.4.1). The final D4 iUN(Q) fit is shown in figure 7.8 .

7.3.7 FOURIER TRANSFORMATION

The distinct scattering curves i(Q) were extrapolated to zero Q so that
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they could be Fourier transformed. Since they appeared to have become
essentially horizontal by the minimum experimental Q-values this was
achieved simply by extending the horizontal region to Q=0 . Note that i(Q)
must necessarily be horizontal at Q=0 . The distinct scattering curves were
then multiplied by Q to yield Qi(Q) (see figure 7.9 for the Qi(Q) curves
after the back-transform correction discussed below) and Fourier
transformed according to equation (4.1.58) using FILON’s quadrature (1929).
The LORCH (1969) modification function M(Q) was wused in the Fourier
transformation so as to reduce termination ripples (see section 3.4.3). The

correlation functions for the NDy7NN13, NDy7oNi3 and 0Dy7NNi3 samples are

denoted NN N 0

T’ (r), oT’(r) and NT’(r) respectively. Similarly the
correlation function derived from the unlike-atom contribution to the
distinct scattering iUN(Q) is denoted UNT’(r). These correlation functions

(after the back-transform correction discussed below) are shown in figure

7.10 .

The T’(r) curves obtained by Fourier transformation of the experimental
Qi(Q) curves were found to have low-r normalisation error peaks, although
they were not particularly large. Generally an investigation into the
source of the normalisation error should be performed so that it can be
corrected. However, in the case of Dy7Ni3 such an investigation was
attempted but was found not to be feasible because of the additional
complications introduced by the presence of magnetic scattering. Hence the
data were corrected using the back-transform correction of LEVY, DANFORD
and NARTEN (1966). This correction is performed by back-transforming the
low-r region of T’(r) where the correlation function should be zero,

subtracting the result from i(Q) and then transforming back to r-space. For
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Dy7Ni3 the part of the T’(r) curves in the region 0<r<1A was
back-transformed. Note that this region ends considerably below the first
true atom-atom peak. The back-transform correction is not generally to be
recommended since it does not address the root cause of the normalisation
error. However, in the case of Dy7Ni3 it proved to be the only practicable
alternative. The effect of the correction in reciprocal-space is to at
least partially counteract the effect of the normalisation error so that
the 1i(Q) curves behave more reasonably, whilst the effect in real-space is
mostly cosmetic. figure 7.11 shows the effect of the back-transform

correction for for the NDy7NNi3 sample on D4, both in real-space and

reciprocal-space.

In the process of extracting the correlation function T’(r) from the
data an average density term T°(r) is added to the correlation function
D’(r) which is obtained directly from the Fourier transformation (equation
(4.1.58)). T°(r) was calculated according to equation (4.1.28) using the
numerical values given in section 5.5 . However, it was found that below
the first peak (r~l1A to 2.5A) the correlation functions for Dy7Ni3 did not
oscillate about the r-axis but showed various small slopes. An error in a
numerical value used in the data analysis can cause such a low-r slope and
in an ideal experiment it may be possible to identify which parameter has
been assigned an incorrect value. An analysis to identify the cause of the
low-r slopes in the Dy7Ni3 data was attempted, and since ONT’(r) did not
appear to slope three possible causes were considered: An error in the
coherent scattering length BDy of NDy wvhich would result in an incorrect
T°(r) for the samples containing NDy, an error in the total scattering

cross-section dDy of NDy which would result in an incorrect normalisation
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of D’(r) for the samples containing NDy, or an error in the atomic number
density g° of Dy7Ni3 wvhich would result in an incorrect T°(r) for all
samples. However, when the low-r slopes of the T’(r) curves from both
diffractometers were studied it was found that there was not a sufficient
degree of consistency to be able to identify an error in any one parameter.
Thus it was concluded that the low-r slopes are probably a result of the
normalisation problems discussed previously. A consequence of this is that
a limit must be placed on the accuracy of the coordination numbers obtained
in Chapter 8; The magnitude of the low-r slopes indicate an accuracy of

2-3% in the peak areas obtained from the correlation functions.

The functions tll,(r) were derived from the measurements of NoT'(r),

ONT'(r) and UNT'(r) using equation (6.4.2) and these are shown in figure

7.12 .

The D4 data were also transformed with the Oma of D2 (ie. with the

X
real-space resolution of D2) and the resultant transforms were compared
with the transforms of the D2 data as a consistency check. The agreement
was good (see figure 7.13), with the D4 correlation functions showing
slightly more structure due to the better Q-resolution of D4. (The effect
of Q-resolution is the converse of the effect of atomic thermal motion - it
causes a broadening in reciprocal-space which corresponds to a damping of
structure in real-space. However the effect is relatively small.) Hence the

modelling studies discussed in Chapter 8 were based on the D4 data since

this has better real-space resolution (higher Qmax)'
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7.3.8 BHATIA-THORNTON FUNCTIONS.

The atom-atom partial structure factor and correlation function
formalism wused above 1is generally ascribed to FABER and ZIMAN (1964).
However, an alternative set of partial functions for binary alloys has been
proposed by BHATIA and THORNTON (1970). The Bhatia-Thornton (BT)
number-concentration partial correlation functions may conveniently be
defined in terms of the particle density operator pl(g,t) used in section

3.3.4 (cf. equation (3.3.51));

G (r,0) = ¢ j< (p1(x710) + p3(x",0)) (py(x'+r,t) + by(x'+x,v)] >dy
(7.3.7)

G (x,0) = NCiCz K[czpi(y,0)-c1pé<y,0)][c2p1<5'+£,t)-c1p2<5'+g,t)]>dy
(7.3.8)
G (,t) = NCicz J<[pi(£',0)+pé(£',0)] [c2p1<5'+£,t)—c1p2<5'+£,t)]> dr*

(7.3.9)

The sum p1(£,t)+p2(£,t) represents the 1local total number density whilst
the combination C2p1(£,t)—c2p1(£,t) represents the 1local deviation of
concentration from the average. Thus Gnn(E’t) represents correlations in
the number density, Gcc(E’t) represents correlations between concentration
fluctuations and Gnc(E’t) represents correlations between density and
concentration fluctuations. As with the Faber-Ziman (FZ) formalism static
distribution functions (t=0) may be defined and the static distribution

functions of the two formalisms are related as follows;

tnn(r) = ¢y tll(r) +¢q tlz(r) + ¢y t21(r) + ¢y tzz(r) (7.3.10)

tcc(r) = Cy tll(r) -4 tlz(r) - ¢ t21(r) +¢q tzz(r) (7.3.11)
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tnc(r) = [ tll(r) + t12(r) ] - [ t21(r) + t22(r) | (7.3.12)

Note that a reversal in the order of definition of atom types 1 and 2
causes a change in the sign of tnc(r)' BT number-concentration partial

structure factors may also be defined;

B ° sinQr
Sij(Q) = Sij + g dij(r) a0 dr
vith; | (7.3.13)
tij(r) = dij(r) + t?(r)

J

_ °
t;(r) = 4nr g 8jn

where i and j may each be set to either n (number) or ¢ (concentration).
Note that this definition differs very slightly from that of BHATIA and
THORNTON (1970) so that the structure factors oscillate about 1 or 0. The
BT number-concentration partial correlation functions and partial structure
factors for Dy7Ni3 on D4 are shown in figures 7.14 and 7.15 respectively.
As with iUN(Q) there were slight inadequacies of the fits in a few regions
of the D4 data and these were corrected with reference to the rav data and
the D2 data. tnn(r) shows that there appear to be two principal nearest
neighbour distances in Dy7Ni3, and tcc(r) shows that there is a preference
for unlike atoms to be neighbours at the first of these distances and for

like atoms to be neighbours at the second.

Since the partial functions of one formalism are given by a linear

combination of the partial functions of the other formalism it 1is clear
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that both contain essentially the same information; they are just different
wvays of expressing and displaying the same information. It was decided to
use the FZ partial functions for most of the modelling studies described in
Chapter 8 since their meaning is more obvious and they are more clearly
related to the atomic structure. In fact for Dy7Ni3 it would be misleading
to concentrate on the BT partial correlation functions; the FZ partial
correlation functions show quite clearly that there is a Ni-Ni neasrest
neighbour peak at about 2.78A which is of particular structural importance
(see Chapter 8) whereas the BT functions effectively mask the occurrence of
this peak. Also, since all but one of the FZ partial functions were

measured directly without the need for matrix inversion, they should have

smaller errors.
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I(Q) for the NDy7NNi3 Sample (Points), showing the Fit to the
Data (Continuous Line), the Calculated Nuclear Self Scattering
(Dot-dashed Line), the Sum of the Nuclear Self Scattering and
the Magnetic Scattering (Dashed Line), and the Removed Bragg
Peaks (Dotted Line) {with a suitable offset}.

a) Measured on D2 {offset 16.0}

b) Measured on D4 at 0.7A {offset 8.0}

¢) Measured on D4 at 0.5A
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I(Q) for the NDy70Ni3 Sample (Points), showing the Fit to the
Data (Continuous Line), the Calculated Nuclear Self Scattering
(Dot-dashed Line), the Sum of the Nuclear Self Scattering and
the Magnetic Scattering (Dashed Line), and the Removed Bragg
Peaks (Dotted Line) {with a suitable offset}.

a) Measured on D2 {offset 8.0}

b) Measured on D4 at 0.74
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Figure 7.6 I(Q) for the ODy7NNi3 Sample (Points), showing the Fit to the

Data (Continuous Line), the Calculated Nuclear Self Scattering
(Dot-dashed Line) and the Sum of the Nuclear Self Scattering
and the Magnetic Scattering (Dashed Line).

a) Measured on D2 {offset 5.0}

b) Measured on D4
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The Diffraction Pattern for the 0Dy70Ni3 Sample. The Points are
the D2 Data, the Dashed Line is the Calculated Nuclear Self
Scattering (for D2) and the Continuous Line {offset 5.0} is the
Result of Subtracting the Nuclear Self Scattering from the Fit
to the Data. The Dashed Line {offset 5.0} is the 0Dy7NNi

Measurement Used to Extend the Measurement of IM(Q).
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The D4 Measurements of i(Q) after the Back-transform
Correction.

a) iNN(Q) {offset 10.0} b) iNO(Q) {offset 5.0}
c) 1UN(Q) {offset 2.0} d) 1ON(Q)
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Figure 7.9 The D4 Measurements of Qi(Q) after the Back-Transform Correction.
a) QiNN(Q) {offset 24.0} b) QiNO(Q) {offset 12.0}
c) QiUN(Q) {offset 4.0} d) QiON(Q)
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Figure 7.10 The D4 Measurements of T’(r) after the Back-transform

Correction. The Continuous Line {offset 10.0} is

Dashed Line is NO

Dot-dashed Line is

NN,

T’(r), the

T’(xr), the Dotted Line is ONT’(r) and the
UN
T’ (r).
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