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A new method for the measurement of bound coherent neutron scattering

lengths is reported. It is shown that a relative measurement of the neutron

scattering length, b, of an element can be made by analysis of the neutron

correlation function of a suitable oxide crystal powder. For this analysis, it is

essential to take into account the average density contribution to the correlation

function, as well as the contributions arising from distances between atoms in

the crystal. The method is demonstrated and verified by analysis of the neutron

correlation function for the corundum form of Al2O3, yielding a value b =

3.44 (1) fm for Al, in good agreement with the literature. The method is then

applied to the isotopes of iridium, for which the values of the scattering lengths

were unknown, and which are difficult to investigate by other methods owing to

the large cross sections for the absorption of neutrons. The neutron correlation

function of a sample of Sr2IrO4 enriched in 193Ir is used to determine values b =

9.71 (18) fm and b = 12.1 (9) fm for 193Ir and 191Ir, respectively, and these are

consistent with the tabulated scattering length and cross sections of natural Ir.

These values are of potential application for obtaining improved neutron

diffraction results on iridates by the use of samples enriched in 193Ir, so that the

severe absorption problems associated with 191Ir are avoided. Rietveld

refinement of the neutron diffraction pattern of isotopically enriched Sr2IrO4

is used to yield a similar result for Ir. However, in practice the Rietveld result is

shown to be less reliable because of correlation between the parameters of the fit.

1. Introduction

Iridate compounds are of fundamental interest owing to their

unique electronic and magnetic behaviours (Crawford et al.,

1994; Kim et al., 2008; Fujiyama et al., 2014; Sala et al., 2014;

Takayama et al., 2015; Chun et al., 2015), and are of practical

interest because of their catalytic properties (Sardar et al.,

2011, 2012, 2014). Neutron diffraction (ND) is an important

structural probe of these materials, especially their magnetic

structures, with the potential to yield accurate and detailed

structural information. Nevertheless, ND measurements on

samples with a significant Ir content are challenging, owing to

the very high absorption cross section of natural iridium NatIr

(see Table 1). The neutron absorption cross section of the

isotope 193Ir is significantly smaller than that of NatIr, and thus

samples made with Ir enriched in 193Ir have the potential to be

advantageous for ND. However, the well known compilations

of values for the coherent neutron scattering lengths of stable

elements and isotopes (Mughabghab, 1984; Koester et al.,

1991; Sears, 1992; Rauch & Waschkowski, 2002) do not include

a value for 193Ir or 191Ir, and it appears that values have never

been reported in the literature. Although the absorption cross

section of 193Ir is markedly less than that of NatIr, it is still

higher than for most elements, and thus the measurement of
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its scattering length is challenging. In this article we report a

new method for obtaining a relative measurement of the

coherent scattering length, by analysis of the neutron corre-

lation function of a suitable oxide crystal powder, which is able

to overcome the difficulties of absorption sufficiently well to

provide a reliable measurement. The method is first demon-

strated and verified by application to a measurement of the

(already known) scattering length of aluminium from the

differential correlation function of the corundum form of

Al2O3. The method is then used to determine the scattering

lengths of 193Ir and 191Ir from the differential correlation

function of a sample of Sr2IrO4 enriched in 193Ir. Both of the

samples studied are oxides, dominated by oxygen (i.e. the

oxygen atomic fraction exceeds 50%), and the scattering

length of oxygen is well known with a relatively small error

(Table 2). Since the method introduced here provides a rela-

tive measurement, oxides are well suited to the method.

There have been a few previous reports of total scattering

studies on liquids that have revealed errors or inconsistencies

in tabulated scattering length values. For example, in ND

studies of methanol, Turner et al. (1991) concluded that one

possible explanation for their results is that the published

scattering length value for 13C is considerably too low.

However, this article is the first report of the use of total

scattering to actually measure a scattering length. The method

introduced here relies on the atomic structure of the sample

being accurately known, and ND measurements on liquids or

glasses would not be well suited to the method.

2. Experimental procedures and results

Al2O3 in the corundum form was supplied by Potterycrafts Ltd

(P3300, 99.0% calcined alumina). Isotopically enriched Ir

(97.6% 193Ir), referred to here as isoIr, was supplied by Trace

Sciences International. The Sr2IrO4 sample was made by

reaction of the isoIr metal powder with SrCO3 (Alfa Aesar,

puratronic 99.994% metals basis). The isoIr and dried SrCO3

were thoroughly ground together in an agate mortar and

pestle, compressed into pellets and then heated at 1473 K for

30 min in a high-purity alumina boat. This treatment was

followed by thorough grinding and a further heating of the re-

pelleted sample at 1473 K for 12 h. This sample is referred to

here as isotopically enriched Sr2IrO4.

Prior to the manufacture of the isotopically enriched

Sr2IrO4 sample, an ND measurement was made on the isoIr

metal powder [see Fig. S1(a) in the supporting information].

Only Bragg peaks due to Ir (Swanson et al., 1955) were

observed, indicating that the isoIr metal powder was chemi-

cally pure. The number density of Ir atoms in pure Ir is about

seven times higher than for Sr2IrO4, and consequently the

measurement on isoIr was much more adversely affected by

absorption. Thus, the result for isoIr is not discussed in detail,

and in fact it is not useful for scattering length determination,

as is discussed below. The chemical purity of the isoIr was also

confirmed by X-ray diffraction (see Fig. S1b).

The GEM diffractometer (Hannon, 2005) at the ISIS

Facility pulsed neutron source was used to measure the

neutron correlation functions of Al2O3 and isotopically enri-

ched Sr2IrO4 at room temperature. A 3.356 g sample of Al2O3

was placed inside a cylindrical container of radius 4.15 mm,

made from 40 mm vanadium foil. The isotopically enriched

Sr2IrO4 sample (1.5337 g) was placed inside a cylindrical

vanadium container of inner and outer radius 2.985 and

3.175 mm, respectively. The standard corrections for back-

ground, absorption, multiple scattering and inelasticity were

made using the Gudrun program (Soper, 2011) and the

ATLAS suite of software (Hannon et al., 1990). Statistical

errors were propagated throughout the data correction and

reduction process. Normalization was achieved using a stan-

dard null alloy V–Nb rod of radius 3.975 mm, and data from

detector banks 2, 3, 4 and 5 (at mean scattering angles 17.26,

34.04, 61.56 and 91.72�) were combined to yield the corrected

experimental distinct scattering, iexp(Q), shown in Fig. 1. Each

detector bank provides reliable data over a different range in

momentum transfer, Q, and the distinct scattering is obtained

by merging of the results from these detector banks so that it

covers the wider range shown in the figure. The ND data
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Table 2
The coherent neutron scattering lengths and absorption cross sections
(for neutron energy 25.3 meV) of the elements considered in this work
(Rauch & Waschkowski, 2002).

Element b (fm) �abs (barn)

O 5.805 (4) 0.00019 (2)
Al 3.449 (5) 0.231 (3)
Sr 7.02 (2) 1.28 (6)
NatIr 10.6 (3) 425 (2)

Table 1
The (natural) abundance, the coherent neutron scattering length, b, and the coherent, incoherent and total scattering cross sections for natural Ir and its
isotopes.

Also given is the absorption cross section for a neutron energy of 25.30 meV and the energy of the nuclear resonance with the lowest energy. The values are taken
from Rauch & Waschkowski (2002), except where indicated otherwise.

Element
or isotope

Abundance
(%) b (fm) �coh (barn) �incoh (barn) �scatt (barn) �abs (barn)

Lowest resonance
energy (meV)

NatIr – 10.6 (3)† 14.1 (8) 0.0 (3.0) 14.0 (3.0) 425 (2) –
191Ir 37.3 12.1 (9)‡ – – – 954 (10) 652.8 (5.0)§
193Ir 62.7 9.71 (18)‡ – – – 111 (5) 1298 (1)§

† The error on this value is quoted in compilations as 0.2 fm (Mughabghab, 1984) or 0.3 fm (Koester et al., 1991; Sears, 1992; Rauch & Waschkowski, 2002), but the original report gives
no indication of the experimental error (Mueller et al., 1963). ‡ This work. § Mughabghab (1984).
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presented here are available from the ISIS Disordered

Materials Database (Hannon, 2013b).

For Al2O3, the sample was of a larger size, leading to better

statistical accuracy, and furthermore only a minor correction

for absorption was required (because of its small absorption

cross sections, see Table 2); the mean absorption cross section

per atom is 0.092 barn. Thus, reliable results were obtained up

to a high maximum momentum transfer, Qmax, of 50 Å�1.

For isotopically enriched Sr2IrO4, the sample was smaller

and relatively highly absorbing (absorption cross section per

atom is 19.11 barn), leading to poorer statistical accuracy. In

addition, owing to the residual amount (2.4%) of 191Ir in the

isotopic Ir, the data were affected by the 191Ir nuclear reso-

nance at 652.8 meV (Mughabghab, 1984), and as a conse-

quence the reliable Q range for each detector bank was more

restricted (Hannon, 2015). Thus, the corrected distinct scat-

tering was limited to a more modest Q range for iexp(Q), with a

value of 23 Å�1 for Qmax. A difficulty with correcting the data

for the isotopically enriched Sr2IrO4 sample is that the values

of �scatt for the isotopes of Ir are not known and hence the

value for NatIr was used to evaluate the corrections. However,

the fitting method used to analyse the correlation function

includes a normalization factor, and therefore the effect of

using this value is negligible. Also, since �incoh for NatIr is small

(see Table 1), it is likely that �scatt for 193Ir is similar to the

value for NatIr (see below for further discussion of this point),

in which case the effect of using the NatIr value on the

normalization will be small.

The presence of hydrogenous impurity in a sample can be a

severe problem for total scattering measurements [e.g. see

Fischer et al. (2008)], owing to the large incoherent scattering

cross section of hydrogen (Sears, 1992; Rauch & Waschkowski,

2002), combined with its large inelasticity effect, which arises

from the similarity of the proton and neutron masses (Soper,

2009). The samples studied here are unlikely to contain

hydrogenous impurities, because the Al2O3 sample was

calcined, whilst the Sr2IrO4 sample was prepared at high

temperature for a long time, but nevertheless the experimental

results were checked for evidence of hydrogen. For time-of-

flight ND, the presence of hydrogen manifests itself clearly in

the measurements in two ways: firstly, as an overall increase in

the scattering level due to the large incoherent scattering cross

section, and secondly as a high degree of inconsistency in the

Q dependence of the intensities (Soper, 2009) measured by

detectors at different scattering angles (i.e. different detector

banks). No such evidence was observed for either sample,

giving a very high degree of confidence that the samples did

not contain even a small amount of hydrogenous impurity.

The next section of this article describes how the distinct

nuclear scattering, i(Q), measured for a sample can be Fourier

transformed to obtain a correlation function in real space.

However, for samples containing magnetic ions, there is a

magnetic contribution to the scattering in addition to the

contribution from the nuclear scattering (Price & Sköld,

1986); the magnetic scattering contribution should be removed

prior to the Fourier transformation. If the sample is in the

paramagnetic state, then the magnetic scattering is smooth and

continuous with a simple dependence on the squared magnetic

form factor, and it may be calculated and subtracted (Hannon,

1989). Sr2IrO4 is magnetically ordered at low temperature,

with an ordering temperature of �250 K, but it behaves as a

paramagnet at room temperature with a small Ir4+ moment of

0.33 mB (Kini et al., 2006). The paramagnetic scattering for

Sr2IrO4 was calculated, using the magnetic form factor para-

meters for Ir4+ calculated by Kobayashi et al. (2011), and this

was subtracted from our ND data. The calculated para-

magnetic scattering is approximately three orders of magni-

tude smaller than the nuclear scattering, and the effect of this

correction was minimal. The magnetic scattering for iridates is

extremely small and this makes it very challenging to measure,

especially because of the additional difficulty that arises from

the very high absorption cross section of natural iridium, NatIr

(see Table 1). The measurement of magnetic scattering from

iridates is one of the subject areas that may benefit from the

use of isotopically enriched Ir, and in particular from the

scattering length value reported in this article.

3. Outline of theory

The quantity measured in an ND experiment (Hannon,

1999a,b, 2015) is the differential cross section
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Figure 1
The corrected experimental distinct scattering, iexpðQÞ, for (a) Al2O3 and
(b) isotopically enriched Sr2IrO4 (after subtraction of paramagnetic
scattering).
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d�

d�
¼ ISðQÞ þ iðQÞ; ð1Þ

where h- Q is the magnitude of the

momentum transfer, ISðQÞ is the self

scattering and iðQÞ is the distinct scat-

tering. [The separation of the cross

section into self and distinct parts1 is an

alternative and equivalent formalism to

a separation into incoherent and

coherent parts. Whereas the incoherent/

coherent formalism is more commonly used in the conven-

tional theory for diffraction from crystalline materials, the self/

distinct formalism is more suitable for the theory of total

scattering (Hannon, 2015).] The self scattering, which can be

calculated approximately, is subtracted from the corrected

data to give the distinct scattering. Structural information may

then be obtained by a Fourier transformation of iðQÞ, yielding

the differential correlation function [sometimes known as the

pair distribution function, PDF (Billinge & Kanatzidis, 2004)]:

DðrÞ ¼ 2

�

Z1
0

QiðQÞMðQÞ sinðrQÞ dQ; ð2Þ

where MðQÞ is a modification function introduced to take into

account the maximum experimentally attainable momentum

transfer, Qmax. The differential correlation function, D(r),

represents the deviation of the distribution of scattering length

from the average density contribution, T0(r), so that the total

correlation function is

TðrÞ ¼ T0ðrÞ þDðrÞ ¼ 4�rg0hbi2
av þDðrÞ; ð3Þ

where g0 ¼ N=V is the macroscopic atom number density and

hbiav ¼
P

l clbl is the average coherent neutron scattering

length for the sample (the l summation is over elements). cl
and bl are, respectively, the atomic fraction and coherent

neutron scattering length for element l. For the current study,

it is of central importance to note that T0(r) depends on the

scattering lengths.

The total correlation function is a weighted sum of partial

correlation functions, tll0 ðrÞ:

TðrÞ ¼ Pl�l0

l;l0
clð2 � �ll0 Þblbl0 tll0 ðrÞ; ð4Þ

where the l; l0 summations are over all unique pairs of

elements in the sample and �ll0 is the Kronecker delta. An

interatomic distance rjk, due to atom pair j and k, with coor-

dination number njk and RMS (root mean square) variation in

distance hu2
jki1=2 contributes a peak to the relevant partial

correlation function with the following form:

tjkðrÞ ¼
njk

rjkð2�hu2
jkiÞ1=2

exp � ðr� rjkÞ2

2hu2
jki

" #
: ð5Þ

The area, All0 , under the peak in T(r) is then given by

All0 ¼
njkð2 � �ll0 Þclblbl0

rjk
: ð6Þ

Thus the value of a particular scattering length affects both the

area under relevant peaks in T(r) [or D(r)] and the slope of

the average density contribution, T0(r) [see equation (3)].

In summary, a peak in the correlation function corresponds

to a commonly occurring interatomic distance in the sample.

Furthermore, the area under the peak depends on the corre-

sponding coordination number, also weighted according to the

scattering lengths of the elements involved.

4. Discussion

4.1. Rietveld refinement for Sr2IrO4

Rietveld refinement has often been used as a method of

scattering length determination (Boucherle & Schweizer,

1975; Koester et al., 1991; Rodriguez et al., 2007; Kennedy &

Avdeev, 2011; Kohlmann et al., 2016) and the site occupancy

can be refined as a proxy for scattering length in standard

Rietveld programs. We performed a Rietveld refinement of

the ND data collected on GEM for Sr2IrO4 to evaluate the

application of this method to the measurement of the scat-

tering length, biso, for isoIr. Scale factors, shifted Chebyshev

polynomial backgrounds, appropriate diffractometer

constants, atomic positions, displacement parameters,

absorption corrections and profile parameters were refined

using GSAS and EXPGUI (Larson & Von Dreele, 2004; Toby,

2001) for banks 3–6 of GEM, covering the d-spacing range

0.31–7.1 Å (corresponding to a Q range of 20.15–0.89 Å�1).

The literature value (10.6 fm, see Table 1) of the scattering

length of NatIr was used for these refinements. The site occu-

pancy of Ir was then refined, the refinement smoothly

converging to a value of 0.9279 (17), with a weighted profile R

factor Rwp = 0.0396 and �2 = 4.26 for 61 variables [see results in

Table 3 and Fig. 2(a)]. The parameters for this refinement are

very similar to those in a previous report for Sr2IrO4 (Craw-

ford et al., 1994) and, furthermore, we found no evidence for

any impurity or other phase in the sample. Assuming full

occupation of the Ir site, the refined occupancy value is

equivalent to an isoIr scattering length of 9.836 (18) fm and the
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Table 3
Rietveld refinement results for full refinement in space group I41=acd of ND data on isotopic
Sr2IrO4, including refinement of Ir site occupancy.

Refined lattice parameters are a = 5.49616 (17), c = 25.7893 (9) Å.

Site Wyckoff position Occupancy x y z Uiso� 100 (Å2)

Sr 16d 1 0 0.25 0.55059 (2) 0.791 (14)
Ir 8a 0.9279 (17) 0 0.25 0.375 0.281 (11)
O1 16d 1 0 0.25 0.45489 (2) 0.806 (14)
O2 16f 1 0.20190 (8) 0.45190 (8) 0.125 0.994 (17)

1 The self scattering cross section (Squires, 1978; Price & Sköld, 1986) arises
from the interference between the wave scattered by each atom with the wave
scattered by itself. The distinct scattering cross section arises from interference
between the wave scattered by each atom and the waves scattered by all of the
other atoms in the sample, not including itself.
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small error bar appears to indicate that a very precise value

has been obtained. However, the correlation matrix for the

refinement indicates that the occupancy was 51.3% correlated

with the isotropic displacement parameter, Uiso, of the Ir site.

We believe it to be well known that a strong correlation

between occupancy and displacement parameters (and,

depending on the Q range measured, absorption) is a common

problem in Rietveld refinement; nevertheless, to our knowl-

edge this is a limitation of the method that has received very

little attention in the literature. An exception is the work of

Heuer (2001), who said ‘Even for refinements with acceptable

fits, correlations between the thermal displacement para-

meters and site-occupancy factors can lead to considerable

uncertainties. One refinement may be precise, but the single

results from several refinements can scatter in a larger range

than suggested by the estimated standard deviations.’ Given

the high degree of correlation, we have investigated the

accuracy of the result by making a series of Rietveld refine-

ments based on the original refinement described above, but

using the following two methods to map out the phase space:

(i) fixing Uiso for the Ir site and refining the occupancy; (ii)

fixing the occupancy and refining the Ir Uiso. This allowed us to

map Rwp as a function of Uiso and occupancy, the results of

which are shown in Fig. 3. It is quite clear that an effectively

equivalent refinement quality can be obtained for a large

range of occupancy (scattering length) values and therefore

the small error obtained on the occupancy in the full refine-

ment is misleading. The contour plot in Fig. 3 shows that, in

terms of Uiso and biso, the minimum in Rwp is broad and

shallow. The absolute minimum value of Rwp is 0.0396

(Table 3), but for example a slight increase in Rwp to only

0.0398 can correspond to a change in biso of more than 0.1. Or,

to put it another way, the innermost contour in Fig. 3 (for Rwp =

0.0398, compared with Rwp = 0.0396 for the best fit) corre-

sponds to a range in isoIr scattering length covering about 9.7–

10.0 fm. In this situation, an alternative method of deter-

mining the value of the scattering length is of value.

4.2. Introduction of the method for determination of b

In essence, the method introduced here allows the bound

coherent neutron scattering length, b, of an element to be

determined by fitting the differential correlation function,

D(r) [see equation (2)], for a crystal powder of known struc-

ture. The value of b influences the different contributions to

D(r) in several ways, and these are demonstrated here by

means of simulations of the correlation functions, performed

using the XTAL program (Hannon, 1993, 2013a). The simu-

lations calculated by this program include the broadening

effects of both thermal motion [see equation (5)] and real-

space resolution [arising from the finite value of Qmax and the

choice of modification function, see equation (2)]. The simu-

lations were calculated using the same values of Qmax and the

same choices of modification function as used to analyse the

experimental data [50 Å�1 and the Lorch function (Lorch,

1969) for Al2O3; 23 Å�1 and the step function (Hannon, 2015)

for isotopically enriched Sr2IrO4].

The simulations for Al2O3 (Fig. 4) were calculated using

lattice parameters and atomic coordinates taken from a

literature report of the crystal structure (Thompson et al.,

1987), whilst the simulations for Sr2IrO4 (Fig. 5) were
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Figure 3
Contour map of Rwp for Rietveld refinements of ND data for isotopic
Sr2IrO4 with various values of the occupancy and isotropic displacement
parameter Uiso for the Ir site; see text for details. The right-hand axis
shows values of biso corresponding to the occupancy values shown on the
left-hand axis.

Figure 2
(a) Rietveld refinement of ND data on isotopic Sr2IrO4 (GEM bank 6,
mean scattering angle 154.26�), including refinement of scattering length
for isoIr (i.e. Ir site occupancy). (b) Refinement of ND data on isotopic
Sr2IrO4 using scattering length for isoIr determined by fitting the
correlation function (GEM bank 6). Red points are experimental data,
whilst green and black lines, respectively, show the fit and the residual
(displaced).
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calculated using the parameters given in Table 3. Because of

the effect of correlated motion, there is less thermal broad-

ening for short distances in the correlation function (especially

between bonded atoms) than for longer distances (Wright &

Sinclair, 1985; Jeong et al., 1999, 2003). Therefore the thermal

broadening was simulated using the distance-dependent

values for the RMS thermal variation in distance, hu2
jki1=2,

given in Table 4. The long-range value of hu2
jki1=2 can be

determined by conventional crystallographic analysis (e.g.

Rietveld refinement), but for short distances, hu2
jki1=2 can only

be determined reliably from the measured correlation
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Figure 4
Simulations of the correlation functions for Al2O3, calculated with the
literature value for bAl, unless stated otherwise. (a) The total correlation
function (continuous line), TsimðrÞ, together with the average density term
(dashed line), T0ðrÞ. (b) The Al—O (blue), O—O (red) and Al—Al
(green) contributions to TsimðrÞ. (c) The differential correlation function,
DsimðrÞ, calculated with the literature bAl value (black), and with the
value of bAl decreased (blue) and increased (red) by 10% compared with
this value.

Figure 5
Simulations of the correlation functions for Sr2IrO4, calculated with the b
value for NatIr, unless stated otherwise. (a) The total correlation function
(continuous line), TsimðrÞ, together with the average density term (dashed
line), T0ðrÞ. (b) The Ir—O (blue), O—O (red) and Sr—O (green)
contributions to TsimðrÞ shown as continuous lines, and the Sr—Ir (blue),
Sr—Sr (red) and Ir—Ir (green) contributions shown as dashed lines. (c)
The differential correlation function, DsimðrÞ, calculated with the
literature b value for NatIr (black), and with the value of bIr decreased
(blue) and increased (red) by 10% compared with this value.
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function itself. The hu2
jki1=2 value, 0.06 Å, in Table 4 for the

shortest bonds is typical of experimental results for Al—O

bonds (Hannon & Parker, 2000; Barney et al., 2007; Hannon et

al., 2008), whilst the longer distance values are approaching

the values derived from crystallographic isotropic displace-

ment parameters for both Al2O3 (Thompson et al., 1987) and

Sr2IrO4 (Table 3).

As is apparent in Figs. 4 and 5, the individual peaks in the

correlation function at short distance are well separated from

each other, but rapidly become overlapping at longer distance,

and it is the short distance features that are used for scattering

length determination, because this region has the most

separation of the different contributions from each other. The

area of a peak in T(r) is proportional to the product of the

scattering lengths of the two elements involved [see equation

(6)] and, for example, the area of an Al—O peak is propor-

tional to bAlbO. Thus for Al2O3 the areas of the (Al—Al or

Al—O or O—O) peaks are proportional to b�2
Al or bAl, or

independent of bAl. Consequently, the scaling of the different

peaks in the total correlation function, T(r), relative to each

other is sensitive to the value of bAl, and the best available

separation between regions with different dependences on the

scattering length of interest is obtained at low r. However, it is

the differential correlation function, D(r) = T(r) � T0(r), that

is obtained directly from an ND experiment [equation (2)],

and the value of D(r) at a particular distance, r, is determined

both by the contributions from the peaks due to nearby

interatomic distances and by the average density contribution

�T0(r). For consideration of the method, it is helpful to divide

D(r) into several regions, discussed here in terms of Al2O3.

The first region of D(r), at low r before the first peak

(distances shorter than �1.6 Å), depends only on �T0(r) and

hence its only dependence on bAl is via the average scattering

length, hbiav [see equation (3)]. The second region includes the

nearest-neighbour Al—O peak (distances shorter than

�2.25 Å), and hence it has a contribution that is proportional

to bAl, as well as the contribution from �T0(r). For longer

distances, the origins of the features in D(r) are more complex,

but at shorter distances it is useful to divide D(r) into regions,

where each region is formed of a peak manifold, and each

manifold has contributions from a number of peaks which are

due to only a small number of different types of structural

interaction. The structural description of each individual peak

for Al2O3 and Sr2IrO4 is given in tables later in the article,

where the fit results are reported. For Al2O3, the first of these

peak manifolds covers the distance range �2.25–2.89 Å; there

are both O—O and Al—Al contributions, and the simulations

(Fig. 4) show that this region has little sensitivity to bAl.

It is important to note that the normalization of the

experimental correlation function, Dexp(r) [obtained directly

from Fourier transformation of the experimental distinct

scattering, iexp(Q)], cannot be relied on to be perfect

(Alderman et al., 2014; Hannon, 2015), so that the correctly

normalized differential correlation function is given by

DðrÞ ¼ fnormDexpðrÞ: ð7Þ
Here, fnorm is a normalization factor, which is allowed to vary

in the fitting process. The value of fnorm deviates from one for a

variety of reasons, such as errors in estimating the number of

atoms in the neutron beam for a powder, sample-dependent

background etc. (Alderman et al., 2014). Nevertheless, if the

corrections of the experimental data have been performed

satisfactorily, the value of fnorm should not deviate from one by

more than say 10%.

The simulations in Figs. 4 and 5 show the effects on D(r) of

10% variation in the values of bAl and bIr, respectively. Clearly,

variation in the value of the scattering length of interest, b,

affects some regions of D(r) much more strongly than others

and therefore a good value of b can be obtained by fitting a

sufficiently wide distance range so that it includes regions with

different dependences on b. Furthermore, the fit should

include the low-r region prior to the first peak, which depends

solely on hbi2
av and fnorm. Note also that the apparent effect of a

change in the value of b on a peak in D(r) may be counter-

intuitive because of the competing effects of �T0(r) and the

area of the peak itself.

As a result of the introduction of the normalization factor,

fnorm, the method introduced here is essentially a relative

method; for example, in the next section we use experimental

data for Al2O3 to determine the value of bAl, but this uses the

literature value for bO, and the value obtained for bAl is thus

dependent on the value of bO. In principle, the method

introduced here could be applied to experimental data for a

monatomic sample, and this may seem attractive because then

the resultant value of b would not be a relative value.

However, for a monatomic sample, the area of all correlation

function peaks and the slope of �T0(r) depend on b
2

[see

equations (3) and (6)], and therefore the value of fnorm cannot

be refined. Consequently the accuracy of the value of b is

determined by the initial normalization of the experimental

data (typically this is reliable to �10%) and in practice this

means that the accuracy is much poorer.
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Table 4
The thermal broadening factors (RMS variation in distance) used to simulate the correlation functions of Al2O3 and Sr2IrO4 shown in Figs. 4 and 5.

Al2O3 Sr2IrO4

Atom pairs Distance range hu2
jki1=2 (Å) Atom pairs Distance range hu2

jki1=2 (Å)

Shortest bonds Al—O <2.5 Å 0.06 Ir—O <2.4 Å 0.06
Second shortest bonds None Sr—O 2.4–2.65 Å 0.07
Next-nearest neighbours O—O 2.5–4.0 Å 0.08 O—O 2.65–3.4 Å 0.11

Al—Al Ir—Sr
Sr—O

Long distances All >4.0 Å 0.10 All >3.4 Å 0.13
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Note that the simulations for Sr2IrO4 (Fig. 5) are based on

the literature value of the scattering length for natural Ir

(Table 1), since the scattering lengths of the two isotopes are

not already known.

4.3. Determination of b for Al

The corundum form of Al2O3 is suitable for demonstrating

and verifying the method for several reasons. Its structure is

well established, and in particular its local structure has some

similarity to Sr2IrO4, in that the shortest interatomic distances

in both compounds arise from oxygen octahedra. Thus an

analysis method developed for Al2O3, which gives a reason-

able value of b for Al, is likely to work well for Sr2IrO4 too.

Aluminium and oxygen are both commonly studied elements

and the scattering length for each natural element is well

known with a small error (Rauch & Waschkowski, 2002).

However, in the analysis presented here, the value of bAl is

treated as though it is unknown, so that it may be determined

(relative to the value of bO) by fitting the measured correlation

function, and then tested by comparison with the literature

value (Table 2). An additional reason for the choice of Al2O3

to demonstrate and verify the method is that the crystal

structure has one Al site and one O site, so that its local

structure, and hence the distribution of short interatomic

distances, is not excessively complicated. On the other hand,

note that the literature value of bAl is small compared with

that of bO, making it harder to determine accurately.

The experimental corrections for Al2O3 are very well

behaved, since absorption is slight (see Table 2), and the

inelasticity correction is not severe (Hannon, 2015); thus the

experimental distinct scattering, iexp(Q), was well determined

up to a high momentum transfer (Fig. 1a). Fig. 6 shows the

experimental differential correlation function, Dexp(r),

obtained by Fourier transformation of iexp(Q) for Al2O3. For

this Fourier transformation, the Lorch modification function

(Lorch, 1969) with a maximum momentum transfer, Qmax, of

50 Å�1 was used, yielding a high resolution in real space with a

full width at half-maximum (FWHM) of 0.109 Å. For values of

r less than the shortest interatomic distance in the sample, the

differential correlation function, D(r), should ideally be equal

to �T0(r), so that it is proportional to r in this region [see

equation (3)]. In practice, experimental results, Dexp(r), do not

perfectly adhere to this behaviour. Firstly, there are Fourier

ripples and statistical noise in the experimental result.

Secondly, an unphysical error peak is often observed at a short

distance in the range below �1 Å, which arises because of

imperfections in the experimental corrections. Most correc-

tions change relatively slowly in Q space, compared with the

genuine experimental information, and hence inadequacies in

the corrections give rise to an error peak at low r. For the

Al2O3 data shown in Fig. 6, a negative error peak is observed

at r ’ 0.1 Å and all fits were performed using a minimum

distance, rmin, of 0.50 Å.

Fig. 6(a) shows the total function that was fitted to the

experimental correlation function, Dexp(r), over the distance

range from 0.50 to 3.58 Å. This range was chosen to be wide

enough to include contributions with all the different depen-

dences on bAl, as discussed in the previous section and illu-

strated in Fig. 4. The coordination number for each distance

was determined from the known crystal structure (Thompson

et al., 1987) and was not varied in the fit; it is assumed the

structure is fully ordered and in particular that the occu-

pancies of all crystallographic sites are one (this is an essential

assumption of the method). The initial values of the inter-

atomic distances were determined from the crystal structure

(Thompson et al., 1987), and for Al—Al and O—O atom pairs

the values were not varied. On the other hand, the Al—O

distances were allowed to vary in the fit, because in oxides it is

the cation–oxygen distances that are mainly affected by

correlated motion, so that they differ from the interatomic

distances determined from the average structure measured by

crystallographic methods (Dove et al., 1997); it was found to be

necessary to vary the Al—O distances to achieve the extreme

closeness of the fit shown in Fig. 6. The thermal widths, hu2
jki1=2,

of all the peaks were allowed to vary in the fit, since these

cannot be determined reliably by any means other than total

scattering. However, the Al—Al peaks are relatively small and
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Figure 6
The experimental differential correlation function, DexpðrÞ, for Al2O3

(black continuous line). (a) Also shown are the total function (blue) fitted
over the distance range 0.50–3.58 Å, the fitted average density term
(black dashed line) and the residual (black continuous line, with values
close to zero) over the range of the fit. (b) Also shown are the individual
component peaks of the fit, using the same colour key for pairs of
elements as in Fig. 4(b).
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hence it was found to be necessary to constrain the values of

hu2
AlAli1=2 in each region to be equal, for a reasonable result to

be obtained. The atom number density, g0 = 0.1177 atoms Å�3,

determined from the crystal structure (Thompson et al., 1987)

was used in the calculation of the fitted function [equation (3)].

Dexp(r) for Al2O3 was fitted using a modified version of a

standard program for fitting neutron correlation functions

(Hannon, 2013c), which allowed the scattering length and

normalization factor to be varied, and the structural para-

meters obtained are given in Table 5. For the fit, the normal-

ization factor was fnorm = 1.082 (4), within the expected

normalization range of �10%, and the scattering length of

aluminium was bAl = 3.44 (1) fm (see Table 6). This value of

bAl agrees closely with the literature value 3.449 (5) fm

(Rauch & Waschkowski, 2002), showing that the method is

capable of determining a scattering length value well. The

fitting program evaluates statistical errors on the fitted para-

meters and these are given in the tables. The experimental

errors on the known scattering lengths have not been allowed

for in our fitting or in the estimation of the errors on the fitted

b values. However, it is of note that the experimental error on

the value of b for oxygen is relatively small (see Table 1) and

consequently its influence is small, showing why oxides are a

good choice of material for this method.

The first peak of Dexp(r) for Al2O3 has a small but signifi-

cant asymmetry and its shape could not be adequately

described by using a single distance to represent the average

Al—O bond length. This is because the difference in the two

bond lengths, 0.1141 Å, is significant in comparison with the

FWHM for the real-space resolution of the measurement. On

the other hand, the fitted Al—O bond lengths differ very little

from those for the average structure (see Table 5), in contrast

to the situation for phases of SiO2, where correlated atomic

motions cause a significant difference (Dove et al., 1997); the

effect is much larger in SiO2 because it has a smaller coordi-

nation number and stronger bonds, and a structure that more

readily accommodates coupled rotations of the structural units

(Buchenau et al., 1984).

In order to investigate what distance range needs to be

fitted to yield a satisfactory value for the scattering length,

several fits were performed over the distance range from

0.50 Å to rmax, for several different values rmax, yielding the

parameters fnorm and bAl given in Table 6. Each value of rmax

was chosen to include a different number of peak manifolds.

The detailed structural parameters for these fits are given in

Tables S1 and S2, and are almost identical to those given in

Table 5, whilst the fits are shown in Figs. S2, S3 and S4. Note

that the fit with rmax = 1.60 Å is the same as a fit for a

monatomic system, in that fnorm cannot be varied in the fit, and

thus it shows the kind of result that might be obtained for a

monatomic sample with data that can be corrected well. As the

value of rmax is increased, the value for the scattering length

bAl improves, in terms of both its experimental error and its

closeness to the literature value. We conclude that the fit

should include the low-r region, the nearest-neighbour peak

and at least the first complex peak manifold, in order to realize
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Table 5
Structural parameters (interatomic distance, rjk, coordination number, njk, and RMS variation in distance, hu2

jki1=2) for the fit to the experimental
differential correlation function, DexpðrÞ, for Al2O3 over the distance range from 0.50 to 3.58 Å.

Blank lines are used to separate the distances for each peak manifold in the correlation function. The interatomic distances and coordination numbers for the
average structure, according to a literature report of the crystal structure (Thompson et al., 1987), are given, and only the Al—O distances were refined in the fit.
The coordination numbers were not refined in the fit. (Statistical errors from the fits are given in parentheses.)

rjk (Å)

Atom pair j–k Average structure Fit njk hu2
jki1=2 (Å) Structural description

(Al—O)1 1.852 1.8550 (8) 3 0.061 (1) Short bond in AlO6 octahedron
(Al—O)2 1.973 1.9691 (9) 3 0.076 (1) Long bond in AlO6 octahedron

(O—O)1 2.540 2 0.076 (2) Edges of face shared between two octahedra
(O—O)2 2.623 2 0.094 (2) Edge shared between two octahedra
(Al—Al)1 2.645 1 0.12 (3)† Distance across shared face
(O—O)3 2.722 4 0.086 (4) Octahedron edge, not shared with another octahedron
(Al—Al)2 2.789 3 0.12 (3)† Distance across shared edge
(O—O)4 2.857 4 0.077 (3) Octahedron edge, not shared with another octahedron

(Al—O)3 3.227 3.218 (1) 3 0.07 (1) Second Al—O shell (i.e. Al—O—Al—O)
(Al—Al)3 3.223 3 0.08 (5)‡ Distance across shared corner
(Al—O)4 3.430 3.43 (2) 3 0.068 (6) Second Al—O shell (i.e. Al—O—Al—O)
(Al—Al)4 3.498 6 0.08 (5)‡ Distance across shared corner
(Al—O)5 3.548 3.56 (2) 3 0.063 (3) Second Al—O shell (i.e. Al—O—Al—O)

† Values constrained to be equal. ‡ Values constrained to be equal.

Table 6
Results (normalization factor, fnorm, and Al scattering length, bAl) from
fitting the experimental differential correlation function, DexpðrÞ, for
Al2O3 over the distance range from 0.50 to rmax (statistical errors from the
fits are given in parentheses).

rmax (Å) fnorm bAl (fm)

1.60 1.0† 3.10 (4)
2.25 1.052 (9) 3.35 (3)
2.89 1.082 (5) 3.44 (2)
3.58 1.082 (4) 3.44 (1)

† Fixed.
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its full potential for scattering length determination. Clearly, it

is beneficial for the fitting to include regions with different

dependences on the scattering length of interest.

4.4. Determination of b for isotopes of Ir

The compound Sr2IrO4 is well suited to the determination

of b for Ir because it has a relatively simple crystal structure,

with two O sites, and one site each for Sr and Ir (see Table 3).

As for Al in Al2O3, the Ir atoms are octahedrally coordinated

by oxygen, and for this higher coordination the local structure

deviations from the average structure are likely to be small.

Furthermore, there is no evidence for partial occupancy of any

of the atomic sites.

The experimental corrections for the isotopically enriched

sample of Sr2IrO4 are much more severe than for Al2O3,

because of the high absorption associated with 193Ir, and the Q

range of the experimental data is much more restricted, owing

to the absorption resonance of the small residue of 191Ir. Fig. 7

shows the experimental differential correlation function,

Dexp(r), of isotopically enriched Sr2IrO4 calculated using the

step modification function (Hannon, 2015) with a value of

23 Å�1 for Qmax. The relatively small value of Qmax was

required as a result of the absorbing effect of the 191Ir reso-

nance, which obscures the higher-Q region. The smaller value

of Qmax (compared with the results for Al2O3) leads to a

broader resolution in real space, which was improved to some

extent by the use of the step modification function [rather than

the Lorch function (Lorch, 1969)], at the expense of significant

termination ripples. Although the termination ripples cause

Dexp(r) to be less visually appealing (particularly at low r),

they are included in the fitting procedure and therefore they

are not a significant difficulty for the fit. For this modification

function and value of Qmax, the real-space resolution has an

FWHM of 0.165 Å.

The experimental differential correlation function, Dexp(r),

of isotopically enriched Sr2IrO4 was fitted with a minimum

distance of 0.70 Å, using a similar procedure to that used for

Al2O3. The parameters for a fit with a maximum distance of

3.40 Å are given in Table 7, and the fit itself is shown in Fig. 7.

According to the Rietveld structure determination given in

Table 3, there is a small difference between the equatorial

(1.979 Å) and axial (2.060 Å) Ir—O bond lengths. However,

this difference (0.081 Å) is small compared with the real-space

resolution and asymmetry of the Ir—O peak is not apparent in

Dexp(r). Therefore a single Ir—O peak at a suitably averaged

distance was used for the fit. Since the two Ir—O bond lengths

are similar, it is reasonable to assume that their thermal

widths, hu2
IrOi1=2, are similar too. Only the peak widths, fnorm

and biso were varied in the fit, whilst all the interatomic

distances were held fixed. Also the widths of the O—O peaks

were constrained to be equal. The atom number density, g0 =

0.07188 atoms Å�3, determined from the Rietveld structure

determination (Table 3), was used in the calculation of the

fitted function [equation (3)].

For the fit shown in Fig. 7 and Table 7, the normalization

factor was fnorm = 0.89 (1); although this value is slightly

outside the expected range of �10%, it is likely that this is due

to the relatively severe effects of absorption. The fit yields a

scattering length for isoIr of biso = 9.77 (17) fm. The error on

this value is larger than that for bAl, and it is likely that this is a

consequence of the high absorption for this sample. Never-

theless, it is worth noting that this error is smaller than that of

the literature value for the scattering length of NatIr (see

Table 1).

Similarly to the fitting for Al2O3, several fits were

performed over the distance range from 0.70 Å to rmax, with

values of rmax chosen to include different numbers of peak

manifolds, yielding the parameters fnorm and biso given in

Table 8. The detailed structural parameters for the fits are

given in Tables S3, S4 and 7, whilst the fits are shown in

Figs. S5, S6, S7 and 7. As for Al2O3, a larger value of rmax leads

to a smaller experimental error for biso, and we conclude that

our best result [biso = 9.77 (17) fm] was obtained with rmax =

3.40 Å (see Table 7 and Fig. 7).

Fig. 2(b) shows a Rietveld refinement that was performed

identically to the refinement discussed in x4.1, with the sole

exception that the Ir scattering length was fixed at the value of

9.77 fm obtained from the correlation function fit, and the
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Figure 7
The experimental differential correlation function, DexpðrÞ, for isotopi-
cally enriched Sr2IrO4 (black continuous line). (a) Also shown are the
total function (blue) fitted over the distance range 0.70–3.40 Å, the fitted
average density term (sloping black long-dashed line) and the residual
(black continuous line, displaced vertically by �1.6 units for visibility,
with the zero level shown as a horizontal black short-dashed line) over
the range of the fit. (b) Also shown are the individual component peaks of
the fit, using the same colour key for pairs of elements as in Fig. 5(b).
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Rietveld fit appears indistinguishable from the earlier Riet-

veld fit (Fig. 2a). This value of biso from the correlation

function fit is well within the central plateau of Rwp shown in

Fig. 3, and is thus consistent with Rietveld refinement when

the correlation between parameters is taken into account. The

scattering length value determined from fitting the correlation

function depends essentially on the relative areas under the

peaks, not the peak heights or widths. Therefore, errors in the

fitted widths of the correlation function peaks (i.e. the hu2
jki1=2

values in Tables 5 and 7) should not have a significant effect on

the value of the fitted scattering length. Thus, the scattering

length determined from fitting the correlation function does

not suffer from the unreliability that affects the result from

Rietveld refinement (due to correlation between parameters –

see x4.1) and hence the correlation function value is to be

preferred. This difference between the two analysis methods

essentially arises as a consequence of the Fourier transfor-

mation given in equation (2): Rietveld refinement is used to fit

data in reciprocal space, where the Debye–Waller factor acts

to reduce the intensities of peaks. On the other hand, the

correlation function is a real-space function, the peaks of

which are convoluted by the (thermal) disorder, and hence

their intensities are not reduced [see equation (5)].

It is advantageous that Ir has only two naturally occurring,

stable isotopes, so that the scattering lengths of natural Ir and

our isotopically enriched metal are given in terms of the

scattering lengths of the two isotopes by

bNat ¼ fNatb193 þ ð1 � fNatÞb191 and

biso ¼ f isob193 þ ð1 � f isoÞb191; ð8Þ
where fNat and fiso are, respectively, the abundance of 193Ir in
NatIr and in the enriched metal, isoIr. These two abundances

are known (see Table 1 and x2), and hence the two simulta-

neous equations of (8) can be solved to yield the scattering

lengths of the two isotopes: b193 = 9.71 (18) fm and b191 =

12.1 (9) fm. The error on b191 is much larger than the error on

b193, firstly because biso has a smaller error than bNat, and

secondly because 191Ir is a minority constituent of both isoIr

and NatIr.

In general, the incoherent cross section of an element has

contributions due to both spin incoherence and isotope

incoherence (Squires, 1978). For a single isotope, i, with

nuclear spin Ii, the average values of the scattering length and

squared scattering length for nuclei of this isotope are given by

bi ¼
ðIi þ 1Þbþi þ Iib

�
i

2Ii þ 1
and b

2

i ¼
ðIi þ 1Þðbþi Þ2 þ Iiðb�i Þ2

2Ii þ 1
;

ð9Þ
where bþi and b�i are the scattering lengths of the two possible

states (with spin Ii + 1
2 or Ii � 1

2, respectively) of the compound

nucleus–neutron system. The element then has a scattering

length and total scattering cross section given by

b ¼ P
i

fibi and �scatt ¼ 4�
P
i

fib
2

i ; ð10Þ

where fi is the abundance of isotope i. The incoherent cross

section of the element is given by

�incoh ¼ �scatt � �coh ¼ �scatt � 4�b
2
: ð11Þ

The incoherent cross section, �incoh, for natural Ir is tabulated

as 0.0 with an experimental error usually given as 3.0 (see

Table 1), although the original published report (Mueller et al.,

1963) gives no indication of the experimental error. Consid-

eration of equations (9), (10) and (11) shows that if �incoh for

the element is exactly zero then this can only occur if bþi and

b�i have the same value for all the isotopes of the element.
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Table 7
Structural parameters (interatomic distance, rjk, coordination number, njk, and RMS variation in distance, hu2

jki1=2) for the fit to the experimental
differential correlation function, DexpðrÞ, for isotopically enriched Sr2IrO4 over the distance range 0.70–3.40 Å.

Blank lines are used to separate the distances for each peak manifold in the correlation function. The interatomic distances and coordination numbers, obtained by
Rietveld refinement (Table 3), are given and were not refined in the fit. (Statistical errors from the fits are given in parentheses.)

Atom pair j–k rjk (Å) njk hu2
jki1=2 (Å) Structural description

Ir—O 2.005† 6 0.069 (2) Average Ir—O distance in IrO6 octahedron

(Sr—O)1 2.475‡ 3 0.087 (3) Shortest bond in irregular SrO9 polyhedron
(Sr—O)2 2.752 4 0.116 (5) Intermediate bond in irregular SrO9 polyhedron
(O—O)1 2.798 2 0.099 (3)§ O2—O2 distance between any pair of equatorial O atoms in IrO6 octahedron
(O—O)2 2.857 4 0.099 (3)§ O1—O2 distance from axial oxygen to equatorial oxygen in IrO6 octahedron
(Sr—O)3 3.009 2 0.118 (10) Longest bond in irregular SrO9 polyhedron

(O—O)3 3.139 0.5 0.099 (3)§ O2—O2 distance in SrO9 polyhedron
Ir—Sr 3.352 8 0.089 (2) Ir—Sr distance across shared face between IrO6 octahedron and SrO9 polyhedron

† Value is an appropriately weighted average for equatorial and axial Ir—O bonds. ‡ Value is an appropriate average of two closely similar Sr—O bond lengths. § Values
constrained to be equal.

Table 8
Results (normalization factor, fnorm, and scattering length of isotopically
enriched Ir, biso) from fitting the experimental differential correlation
function, DexpðrÞ, for isotopically enriched Sr2IrO4 over the distance
range from 0.70 Å to rmax (statistical errors from the fits are given in
parentheses).

rmax (Å) fnorm biso (fm)

1.70 1.0† 9.03 (66)
2.19 0.97 (3) 10.76 (44)
3.10 0.89 (2) 9.75 (18)
3.40 0.89 (1) 9.77 (17)

† Fixed.
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Thus, the fact that experiment (Mueller et al., 1963) shows that

the value of �incoh is small implies that the scattering lengths of

the two isotopes must be similar to the scattering length of the

natural element; our values of 9.71 (18) and 12.1 (9) fm for the

scattering lengths of 193Ir and 191Ir are similar to the value of

10.6 (3) fm for NatIr, and therefore our values are shown to be

reasonable. The actual value of �incoh for NatIr cannot be

deduced from these three scattering length values, but the

smallest possible value that is consistent with them is

0.17 barn, and this is reasonable in comparison with the

tabulated value of 0.0 (3.0) barn (see Table 1).

Our analysis has shown that it is advantageous to fit D(r) up

to a larger maximum distance, rmax. However, one factor that

we have not taken into account is the effect of experimental Q

resolution, which leads to the features in D(r) being increas-

ingly damped as r increases (Grimley et al., 1990; Toby &

Egami, 1992; Tucker et al., 2001), and it may be necessary to

consider this effect if the method is extended to longer

distances. Nevertheless, the Q resolution of the GEM

diffractometer is high (Hannon, 2005), and thus for the rela-

tively small range in r used for the analysis reported here the

effect of Q resolution will be small.

A possible advantage of the scattering length measurement

method introduced here is that it is based on diffraction, the

same experimental technique as that for which the value of biso

is likely to be used. Although conventional crystallographic

methods have been used before to determine scattering

lengths, this is the first reported use of total scattering methods

to determine a scattering length.

We have been able to deduce values for the scattering

lengths of both isotopes of Ir, and hence our results make it

possible to obtain a value of the Ir scattering length for a

sample enriched in 193Ir with any specified value of the

enrichment factor, fiso [see equation (8)]. Thus, our results

make it possible for the first time to take full advantage of the

potential benefit (reduced absorption) for ND that arises from

enrichment in 193Ir, and this may lead to advances in the study

of iridates by ND.

5. Conclusions

It has been proposed that a relative value for the bound

coherent neutron scattering length, b, of an element can be

determined from a total scattering neutron diffraction

measurement on a suitable oxide crystal powder of known

structure. This is achieved by suitable fitting of the neutron

correlation function, for which it is essential to take into

account the contribution from the average density of the

sample. The capability of the method has been demonstrated

and verified using a measurement on the corundum form of

Al2O3 to obtain a value b = 3.44 (1) fm for Al, in good

agreement with the literature value of 3.449 (5) fm. It has been

shown that, to realize the full potential of the method, the fit

should cover a range of interatomic distances that starts from

a minimum value significantly below the shortest distance in

the sample, and has a maximum value sufficiently large to

include both the nearest-neighbour contribution and the first

complex manifold of peaks in the correlation function. The

method has been applied to the isotopes of Ir, for which the

values of the scattering lengths were unknown and which are

difficult to investigate because of the large absorption cross

sections. Values of b = 9.71 (18) fm and b = 12.1 (9) fm for 193Ir

and 191Ir, respectively, have been determined from the neutron

correlation function of a sample of Sr2IrO4 enriched in 193Ir.

The Ir scattering length has also been determined by Rietveld

refinement of the neutron diffraction pattern of isotopically

enriched Sr2IrO4, yielding a similar result to that obtained

from fitting the correlation function. The result from Rietveld

analysis, however, is shown to suffer from uncertainty due to

correlation between parameters in the fit. The values obtained

for the scattering lengths of the two Ir isotopes are shown to

be consistent with the tabulated scattering length and cross

sections of natural Ir, and imply a small incoherent cross

section for natural Ir. The measurement of the scattering

lengths of these two isotopes permits the use of samples

enriched in 193Ir to obtain significantly better neutron

diffraction results on iridates than was hitherto possible.
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Price, D. L. & Sköld, K. (1986). Neutron Scattering, Part A, edited by
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